ABSTRACT

STUDENT: Brent A. Krieg

DEGREE: Master of Landscape Architecture

COLLEGE: Architecture and Planning

DATE: May, 2009

Pages: 142

This landscape architecture study proposed a retrofit design for a ten acre site containing nine multi-family apartment buildings in Anderson, Indiana. The site was chosen because it has a diverse land-use context which displayed common environmental and socio-economic problems found throughout Anderson. The creative project was a plan designed to reduce stormwater runoff quantities to predevelopment rates for a ten year one hour storm event while also improving stormwater quality. One strategy used to meet stormwater goals was low impact development (LID). Another goal was to conserve energy and resources on site using a community garden. The final aspiration was to recommend transformations of the landscape to improve the quality of life for apartment residents and surrounding neighbors.

These goals were created through a thematic study of literature on stormwater problems such as combined sewer overflow and non-point source pollution, an examination of the term “ecological”, a case study on the High Point residential
redevelopment in Seattle, Washington, and a site inventory and analysis of the apartment complex and its context.

This creative project has defined and designed an ecological stormwater system. The design products enclosed include a master plan and numerous perspectives, construction documents, and stormwater runoff calculations for predevelopment rates, developed rates, and ecological stormwater retrofit rates for the site. The retrofit design hypothetically achieves the stormwater runoff quantity goals. Water quality measurements are out of the scope of this project therefore not calculated. The ecological stormwater system design suggests site improvement which could create a new sense of place for a positive, healthy, and educational quality of life, while serving as an example for solving similar site design and stormwater management problems.
Acknowledgments

I would like to thank my family and wife Michelle, my graduate peers, M. Scott Brandon, Jacob Carringer, Abby and Wes Homoya, Martha Hunt, Chris Marlow, Dr. Annette Rose, Leslie Smith, and everyone else who has helped me on this project and on my educational journey up to this point.
Table of Contents

Abstract ..i
Acknowledgments ..iii
Table of Contents ..iv
List of Illustrations ...vii
List of Construction Documents ...x

1. Project and Problem Introduction ... 1
 1.1 Problem Statement and Sub problems ... 3
 1.1.1 Sub-Problem 1 .. 4
 1.1.2 Sub-Problem 2 .. 5
 1.2 Goals and Objectives .. 6
 1.3 Delimitations ... 8
 1.4 Assumptions ... 9
 1.5 Significance ... 9
 1.6 Methodology ... 10
 1.7 Definition of Terms ... 11

2. Literature Review ... 15
 2.1 Ecological Design ... 15
 2.2 Water Quality ... 20
 2.2.1 Combined Sewer Overflow (CSO) ... 20
 2.2.2 Non-Point Source Pollution (NPS) ... 22
2.2.3 Water Regulations (NPDES & Phase II) 23
2.3 Water Quantity .. 27
 2.3.1 Low Impact Development (LID) 27
 2.3.2 Split-Flow Stormwater Management Strategies 29

3. Case Study: High Point Redevelopment: Seattle, WA 33

4. Site Inventory and Analysis 46
 4.1 Demographics ... 46
 4.2 Context and Surrounding Land Uses 48
 4.3 Transportation and Circulation 51
 4.4 Visual and Perceptual Characteristics 55
 4.5 Topography, Soils and Geology 57
 4.6 Watersheds and Hydrology 62
 4.7 Summary .. 65

5. Design Recommendations .. 66
 5.1 Design Program ... 66
 5.2 Design Drawings ... 74
 5.3 Construction Documents 100
 5.4 Conclusion ... 109

Appendix A: Septic Tank Suitability Map 111
Appendix B: Stormwater Runoff Calculations 112
Appendix C: North Anderson Transit Map and Schedule 115
Appendix D: Crystal Glen Aerial Base Map 117
Appendix E: Split-Flow Plan/Diversion Weirs/

Section of Split-Flow System................................. 118

Appendix F: High Point Drainage System Illustration...............119

Appendix G: Crystal Glen Concepts and Sketches...................... 120

Works Cited... 126
List of Illustrations

Figure 1-1: Indiana Map ... 2
Figure 1-2: Anderson Arial Image ... 3
Figure 2-1: Pollutants of Concern/Consequences of CSO’s 21
Figure 2-2: Low-Impact Development Techniques and Hydrologic Design and Analysis Components ... 28
Figure 2-3: Thornthwaite Water Balance Concept 31
Figure 3-1: Check dam with weir notch, High Point 34
Figure 3-2: Stormwater detention pond and grade change, High Point ... 35
Figure 3-3: Anderson, Indiana Climate ... 36
Figure 3-4: Seattle, Washington Climate .. 36
Figure 3-5: Community Garden, High Point 37
Figure 3-6: Community Garden, High Point 37
Figure 3-7: Playground, High Point .. 40
Figure 3-8: Rain Garden, High Point ... 41
Figure 3-9: Bio-Swale, High Point .. 41
Figure 3-10: Porous Concrete Sidewalk, High Point 43
Figure 3-11: Porous Concrete Street, High Point 43
Figure 3-12: Infiltration Trench, High Point 44
Figure 3-13: Infiltration Trench and Inlet, High Point 44
Figure 4-1: North Anderson Triangle .. 48
Figure 4-2: North Anderson Triangle Land Use and Building Footprint…………………………………………………………… 50
Figure 4-3: Man crossing Crystal Glen on Bicycle…………………………………………………………… 51
Figure 4-4: Crystal Glen North Berm…………………………………………………………………… 52
Figure 4-5: Crystal Glen West Swale…………………………………………………………………… 53
Figure 4-6: Crystal Glen Main/Only Entrance………………………………………………………… 54
Figure 4-7: Crystal Glen Flooded Parking Lot and Dumpster Access……………………………………………….. 55
Figure 4-8: Crystal Glen Flooded North East Area………………………………………………………… 56
Figure 4-9: Crystal Glen Littered North East Drop Inlet………………………………………………………… 57
Figure 4-10: Crystal Glen Soils Map……………………………………………………………………….. 58
Figure 4-11: Crystal Glen Bedrock Geology Map………………………………………………………….. 60
Figure 4-12: Crystal Glen Economic Geology Map…………………………………………………………. 61
Figure 4-13: Crystal Glen Drainage Basins…………………………………………………………………… 63
Figure 4-14: Crystal Glen Watersheds………………………………………………………………………… 64
Figure 5-1: Master Plan #1- view of Crystal Glen………………………………………………………………… 76
Figure 5-2: Perspective #1- view of entrance road from the south……………………………………………… 77
Figure 5-3: Perspective #2- view looking through west commons……………………………………………… 78
Figure 5-4: Perspective #3- view of Broadway boardwalk………………………………………………………… 79
Figure 5-5: Perspective #4- view of check dam…………………………………………………………………… 80
Figure 5-6: Perspective #5- Broadway Avenue and Crystal Glen transition…………………………………… 81
Figure 5-7: Perspective #6- view of north trail from intersection of Broadway boardwalk……………………………… 82
Figure 5-8: Perspective #7- view of north trail pedestrian bridge……………………………………………… 83
Figure 5-9: Perspective #8- view of bus shelter and gateway

Figure 5-10: Perspective #9- view of bus shelter and central space

Figure 5-11: Perspective #10- view of central axis from bus shelter

Figure 5-12: Perspective #11- view of playground from central sidewalk

Figure 5-13: Perspective #12- view of playground and bio-swale

Figure 5-14: Perspective #13- view of community garden, playground, and bus shelter

Figure 5-15: Perspective #14- view of community garden from central walk

Figure 5-16: Perspective #15- view of community garden and bio-swale

Figure 5-17: Perspective #16- view of rain harvest system and bio-swale

Figure 5-18: Perspective #17- central view of Crystal Glen from the north

Figure 5-19: Perspective #18- eastern view of Crystal Glen from the north

Figure 5-20: Perspective #19- view across wetland to the woodland

Figure 5-21: Perspective #20- view of woodland trail

Figure 5-22: Perspective #21- view of woodland shelter

Figure 5-23: Perspective #22- view of pine grid from the south trail

Figure 5-24: Perspective #23- central view of the entrance
List of Construction Documents:

Sheet 1 of 8: Grading Plan... 101
Sheet 2 of 8: Existing Site Conditions... 102
Sheet 3 of 8: Design Elements.. 103
Sheet 4 of 8: Hardscape and Drainage Details................................. 104
Sheet 5 of 8: Triton System Layout and Chamber Details............... 105
Sheet 6 of 8: Triton Header Row Section and Layout in Isometric View 106
Sheet 7 of 8: Typical Triton Cross Section for Single Stack Detention

 Installation and Typical Main Header Row Assembly............. 107
Sheet 8 of 8: Triton S-29 and End Cap Specifications..................... 108