ALTERNATIVE SCHOOL EDUCATION: USING WEB-BASED CURRICULUM PROGRAMS TO ASSIST AT-RISK STUDENTS WITH HIGH SCHOOL CREDIT RECOVERY IN SELECT EAST CENTRAL INDIANA SCHOOLS

A DISSERTATION
SUBMITTED TO THE GRADUATE SCHOOL
FOR THE DEGREE
DOCTOR OF EDUCATION
BY
WILLIAM SHANE ROBBINS
DISSERTATION ADVISOR: DR. JOSEPH MCKINNEY

BALL STATE UNIVERSITY
MUNCIE, INDIANA
DECEMBER 2011
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

ALTERNATIVE SCHOOL EDUCATION: USING WEB-BASED CURRICULUM PROGRAMS TO ASSIST AT-RISK STUDENTS WITH HIGH SCHOOL CREDIT IN SELECTED EAST CENTRAL INDIANA SCHOOLS

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

FOR THE DEGREE

DOCTOR OF EDUCATION

BY

WILLIAM SHANE ROBBINS

APPROVED BY:

______________________________ ____________________________
Dr. Joseph McKinney, Committee Chairperson Date

______________________________ ____________________________
Dr. William Sharp, Committee Member Date

______________________________ ____________________________
Dr. Delbert Jarman, Committee Member Date

______________________________ ____________________________
Dr. Thomas Weidner, Committee Member Date

______________________________ ____________________________
Dean of Graduate School Date

BALL STATE UNIVERSITY

MUNCIE, INDIANA

DECEMBER 2011
ALTERNATIVE SCHOOL EDUCATION: USING WEB-BASED CURRICULUM PROGRAMS TO ASSIST AT-RISK STUDENTS WITH HIGH SCHOOL CREDIT RECOVERY IN SELECT EAST CENTRAL INDIANA SCHOOLS

William Shane Robbins
Ball State University
December 2011
Advisor: Dr. Joseph McKinney

ABSTRACT

“We know that education can be an arduous process. Countries use different approaches based on societal acceptances, but effective education always requires enormous efforts. Whether success is achieved, depends on the development of a rigorous and progressive curriculum, while at the same time providing all students the opportunity to learn” (Ravitch, 2010, p. 225). The purpose of this study was to analyze the success at which web-based curriculum is being utilized to meet the needs of at-risk students by providing them with the opportunity to recover lost credit as a means to keep them on the path to high school graduation. The institutions studied were select institutions that are identified by the Indiana Department of Education as recognized alternative education providers as well as select known public school corporations, in East Central Indiana, who are using web-based
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

curriculum credit recovery programs. This researcher investigated the
effectiveness of this credit recovery strategy as a tool to improve academic
achievement and ultimately high school graduation. Additional information
was sought on the challenges experienced in terms of support from the key
stakeholders in breaking away from a traditional school setting when
addressing the needs of students who are in jeopardy of failing to graduate.
Data were obtained from the Indiana Department of Education and looked at
graduation rates, dropout rates, as well as End of Course Assessment results.

A survey was distributed to the survey population in an effort to
gather a deeper understanding of the successes and failures schools were
experiencing in an effort to break away from the status quo and leverage the
advances of modern technology in an effort to provide students with multiple
opportunities to realize academic success.

The literature review compiled research on the current opinions for the
utilization of web-based curriculum programs, the national attention being
directed at public education as a key element in the economic slump of the
American economy, and the economic impact on local and national economies
for students who do not complete high school.

Student achievement data collected from the survey population
revealed positive trends on graduation rates, dropout rates, and performance
on the Algebra I and English 10 End of Course Assessment.

Recommendations for positive implementation of web-based credit recovery
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

programming were discussed. Future research on this subject was recommended and ideas included a possible longitudinal study on a select group of at-risk students to identify strengths and weaknesses of this type of program.
My life shall touch a dozen lives before this day is done,

Leave countless marks for good or ill ere set the evening sun.

This is the wish I always wish, the prayer I always pray,

Lord, may my life help other lives it touches by the way

-Anonymous Author
ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to the many people who offered me advice and guidance during the long journey of completing this study. Without their support this project would not have been possible.

I would like to particularly extend appreciation to my Committee Chairman, Dr. Joseph McKinney as well as Dr. William Sharp who encouraged me to complete this project. I would also like to thank Committee Members Dr. Del Jarman, and Dr. Thomas Weidner.

Although not an official part of my committee, Dr. Timothy Long provided me with both professional guidance and personal encouragement. Without his support the completion of this project would not have been possible. Dr. Long is a true mentor and friend in every sense of the word.

Another professional colleague, and friend, who has provided me guidance for many years is Ken Kline. Mr. Kline has been a mentor since my days as a student in his Government class so many years ago. I spent many occasions in his office, while serving as his assistant principal, discussing my goal of completing my doctoral degree. He was always there to listen, and encourage me. He continues to be a friend and mentor for whom I have the deepest appreciation and respect.

Finally, I would be remiss if I did not thank my wife Heather, and my sons Bryce and Brandon. Their encouragement and support during the writing of this dissertation was invaluable. I sacrificed a great deal of family
time during this process. They were and are an active part of my journey as an educator and it is for that reason I feel the satisfaction of completing this project. It was a strange and unique venture that has opened my eyes. The final stages of my project were completed as I served a tour in Afghanistan on active duty in support of Operation Enduring Freedom. While serving as the education officer for the 3-19th Agribusiness Development Team, I seized the opportunity to continue working on this project. The take away from this scenario is that my look into the research and the findings became global. It has added a new dimension to the term at-risk and more importantly to the opportunities we have when looking at school reform in an effort to assist all students in their academic pursuits.

WSR
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>APPROVAL PAGE</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 1.1 STATEMENT OF THE PROBLEM</td>
<td>3</td>
</tr>
<tr>
<td>CHAPTER 1.2 PURPOSE OF THE STUDY</td>
<td>4</td>
</tr>
<tr>
<td>CHAPTER 1.3 SIGNIFICANCE OF THE STUDY</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER 1.4 RESEARCH QUESTIONS</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER 1.5 METHODOLOGY</td>
<td>7</td>
</tr>
<tr>
<td>CHAPTER 1.5 DELIMITATIONS</td>
<td>7</td>
</tr>
<tr>
<td>CHAPTER 1.6 DEFINITIONS</td>
<td>8</td>
</tr>
<tr>
<td>CHAPTER 1.7 SUMMARY</td>
<td>14</td>
</tr>
<tr>
<td>CHAPTER 2 REVIEW OF THE LITERATURE</td>
<td>15</td>
</tr>
<tr>
<td>CHAPTER 3 RESEARCH METHODOLOGY</td>
<td>43</td>
</tr>
<tr>
<td>CHAPTER 4 RESULTS</td>
<td>51</td>
</tr>
<tr>
<td>TABLE 4.1</td>
<td>54</td>
</tr>
<tr>
<td>TABLE 4.2</td>
<td>54</td>
</tr>
<tr>
<td>TABLE 4.3</td>
<td>55</td>
</tr>
<tr>
<td>TABLE 4.4</td>
<td>55</td>
</tr>
<tr>
<td>TABLE 4.5</td>
<td>56</td>
</tr>
</tbody>
</table>
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

TABLE 4.6.. 56
TABLE 4.7.. 57
TABLE 4.8.. 57
TABLE 4.9.. 58
TABLE 4.10... 58
TABLE 4.11... 59
TABLE 4.12... 59
TABLE 4.13... 60
TABLE 4.14... 60
TABLE 4.15... 61
TABLE 4.16... 61
TABLE 4.17... 62
TABLE 4.18... 62
TABLE 4.19... 63
TABLE 4.20... 63
TABLE 4.21... 64
TABLE 4.22... 64
TABLE 4.23... 65
TABLE 4.24... 65
TABLE 4.25... 66
TABLE 4.26... 67
TABLE 4.27... 69
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

TABLE 4.28... 70
TABLE 4.29... 73
CHART 1 ... 73
TABLE 4.30... 74
TABLE 4.31... 74
CHART 2 ... 75
TABLE 4.32... 75
CHART 3 ... 76
CHART 4 ... 77
CHART 5 ... 78
CHART 6 ... 79
CHART 7 ... 80
CHART 8 ... 81
CHART 9 ... 81
CHAPTER 5 CONCLUSIONS ... 84
REFERENCES .. 98
APPENDIX A- Administrator Interview 106
APPENDIX B- Email Invitation to Participate in the Survey......... 110
APPENDIX C- Email Reminder for Survey Participation............. 112
APPENDIX D-Identified Programs for the Questionnaire Survey...... 114
APPENDIX E- Informed Consent.. 116
APPENDIX F- Survey Questions....................................... 120
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

APPENDIX G- Institutional Review Board... 127
CHAPTER I

Public Education is a great instrument of social change....Education is a social process, perhaps the most important process in determining the future of our country, it should command a far larger portion of our national income than it does today-James Bryant Conant, President Harvard University, 1933-1953.

For years the United States has witnessed a steady decline in its share of the global marketplace. The economic decline and the need to maintain a competitive edge in the global economy has put public education front and center as the major reason for the decline. A long line of U. S. presidents, congressmen, and state legislatures sought and passed laws aimed at improving educational performance. Indeed, the nation turned to the public schools to race to the top of the world in education. But at the turn of the century Congress and state legislators were not only concerned with strengthening math and science education, but also with the national dropout rate and the poor labor market outcomes for those without a high school diploma.
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

One avenue many educational experts believe that could significantly contribute to an educational turnaround is to explore instructional delivery which breaks tradition. One possibility for improving student educational outcomes is through the use of alternative models of instruction. Since the inception of the No Child Left Behind Act (No Child Left Behind Act, 2001), schools have feverously explored ways to meet the needs of the growing at-risk student population. In doing so several questions and problems surrounding at-risk students must be answered and therefore mitigated. The following is a snapshot of some of the most prevalent issues.

1. What is the greatest challenge to at-risk students in the traditional academic setting?

2. Do the school administration and greater school community support the alternative school approach?

3. What type of program features exist within a successful alternative school setting that contribute to student success?

4. How could alternative schools improve their programs to better suit the needs of at-risk students?

5. What could traditional schools learn from alternative schools in order to better serve students before they are labeled “at-risk” or have dropped out?
Statement of the Problem

Public education has long been called upon to cultivate this country’s richest and deepest asset, the American student. “As the financial meltdown and economic slump hold the national spotlight, a potential crisis is on the horizon: a persistently high dropout rate that educators and mayors across the country say increases the threat to the country’s strength and prosperity” (Fields, 2008, p.1). There is a strong belief that the education problem is the mediocre performance of American Public Schools. Moe and Chubb (2009), leading educational economists argue “By any reasonable standard, the schools are not meeting the needs of 21st century children” (p. 149).

More and more students are becoming disconnected with education, falling behind in their quest for graduation, experiencing a sense of hopelessness, and eventually “dropping out” of school. The dropout problem has brought with it a sense of urgency. According to America’s Promise Alliance, a nonprofit group based in Bethesda, Maryland, it is estimated that by cutting the number of dropouts in half tax revenues would increase $45 million annually.

It is essential that schools find ways to overcome the societal barriers that hinder students’ progress towards graduation. K-12 education must address the disconnect many students experience at school, and the resulting sense of hopelessness. Finding ways to reach students and provide them with a
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

challenging and rewarding environment, set on their terms, is one way for this to be accomplished.

The current generation of students is growing up in the digital age. Moe and Chubb assert that “technology holds enormous promise for schools and learning. It has the capacity to transform the means of production in education” (p. 149). It is precisely this technology that may be the missing link for some students. Although it strays from what is considered traditional class room instruction, it may be the key to re-engaging and making these select students feel comfortable in an environment that they otherwise would not.

Purpose of the Study

Students withdraw from school for a variety of reasons. Many struggle to find a place to fit and have a difficult time achieving success. Some find the available courses do not possess the challenge necessary to keep them engaged. Others fall behind and simply just do not have the means or will power to “catch-up.” With the advancements of technology, it may be possible to link the common interests of today’s generation with tools to supplement, or in some cases replace, traditional instruction as an avenue to re-engage students and assist them in staying on course for graduation. The focus of this research was to determine if web-based curriculum software is a viable way to keep at-risk students engaged in the school process. Thus, allowing for credit recovery, or credit acceleration, and ultimately helping them to secure
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

a diploma from high school. Furthermore, while examining the use of web-based software to address the needs of at-risk students, the study also explored the implications of the use of the software in financially challenged schools.

Significance of the Study

The findings and conclusions developed in this study provided insight into the value and effectiveness of using web-based curriculum delivery within a school corporation. Data and conclusions can be used to develop policy pertaining to the standard operational procedures of web-based curriculum delivery within a school district. These procedures could be utilized to make decisions related to personnel, programming (lengths and types offered), and partnerships within the community. Additionally, the research provided insight into the “buy-in” of such a program by key stakeholders both within and outside the immediate educational community. This study serves as a contribution to the limited professional literature on web-based curriculum as a means to recover or accelerate academic credit obtainment in K-12 education.

Research Questions

In order to discover how effective schools are at addressing the needs of at-risk students in the state of Indiana, the following research questions were presented:
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

Research Question 1

Has utilizing web-based curriculum software assisted the at-risk student population in the recovery of lost credit and increased graduation rates?

Research Question 2

Does the school administration and greater school community support an alternative approach to traditional instructional delivery which utilizes web-based credit recovery/acceleration options?

Research Question 3

Has the lack of student technology skills or access to technology prevented students from accessing web-based curriculum software applications?

Methodology

The Indiana Department of Education list of Alternative School Programs as listed for the school year 2010-11 served as the primary resource to identify the initial school respondents for the survey. The initial mailing was sent via e-mail on May 27, 2011. The introductory letter, in the form of an e-mail, provided the respondent with the opportunity to complete the survey on-line instead of completing a hard copy. The website address for the survey was provided. The cover letter emphasized the anonymous nature of the survey and its responses. In addition to the survey, five school corporations, with known web-based credit recovery programs, were identified. Superintendents of those school corporations were interviewed for purpose of a pilot study.
Delimitations

The following delimitations have been placed on this study:

1. The surveys were limited to schools in East Central Indiana.
2. The responses were based on surveys and self-reporting.
Definitions

The following terms were defined for use in this study:

Alternative Assessments. Ways other than standardized tests to get information about what students know and where they need help, such as oral reports, projects, performances, experiments, and class participation (EdSource, 2010).

Alternative Education. This term broadly refers to public schools which are set up by states or school districts to serve students who are not succeeding in the traditional public school environment. Alternative schools offer students who are failing academically or may have learning disabilities or behavioral problems an opportunity to achieve in a different setting. While there are many different kinds of alternative schools, they are often characterized by their flexible schedules, smaller teacher-student ratios and modified curriculum (Daniels, Bizar, and Zemelman, 2001).

Alternative School. These schools are sometimes called a mini-school, and they are an educational establishment with a curriculum and teaching methods that are nontraditional. These schools have a special curriculum offering a more flexible program of study than a traditional school. Many such schools were founded in the United States in the 1970s as an alternative to mainstream or traditional classroom structure. A wide range of philosophies and teaching methods are offered by alternative schools; some have strong political, scholarly, or philosophical orientations, while others are
more ad-hoc assemblies of teachers and students dissatisfied with some aspect of mainstream or traditional education (worldlingo.com, 2010).

At-Risk Student. Describes someone who is unlikely to graduate on schedule with both the skills and self-esteem necessary to exercise meaningful options in the areas of work, leisure, culture, and interpersonal relationships. Other notable characteristics of “at-risk” students are on the free & reduced lunch program and come from poverty have experienced academic failure, and a history of misconduct (Smink & Schargel, 2004).

Blended Learning. This term refers to a student who learns in part in a supervised brick-and-mortar place away from home and also in part through online delivery, with some element of student control over the place, path, and/or pace. (Alliance, 2011).

Credit Recovery. Regaining the educational ground lost over the years. Effective options that keep students from having to retake classes with much younger students (Plato, 2011).

Differentiated Instruction. This is also referred to as “individualized” or “customized” instruction. The curriculum offers several different learning experiences within one lesson to meet students’ varied needs or learning styles. For example, different teaching methods for students with learning disabilities (School Wise Press, 2010).
Digital Natives. A digital native is a person for whom digital technologies already existed when they were born, and hence has grown up with digital technology such as computers, the Internet, mobile phones and MP3s (Wikipedia, 2010).

Distance Education. Also referred to as distance learning, is a field of education that focuses on the pedagogy, technology, and instructional system designs that aim to deliver education to students who are not physically “on site”. According to the U.S. Department of Agriculture, it “is a process to create and provide access to learning when the source of information and the learners are separated by time and distance, or both.” In other words, distance learning is the process of creating an educational experience of equal qualitative value for the learner to best suit their needs outside the classroom. Distance education courses that require a physical on-site presence for any reason including the taking of examinations is considered to be a hybrid or blended course of study. This emerging technology is becoming widely used in universities and institutions around the globe. With the recent trend of technological advance, distance learning is becoming more recognized for its potential in providing individualized attention and communication with students internationally. The most widely cited pedagogical theory of distance education is that of “transactional distance” (USDA, 2010).
Independent Study. Specially designed instruction in courses taught through a variety of delivery methods that complement traditional high school curricula and provide an accredited diploma (School Wise Press, 2010).

Individual Education Program (IEP). A written plan created for a student with a disability by the student’s teachers, parents or guardians, the school administrator, and other interested parties. The plan is tailored to the student’s specific needs and abilities, and outlines measurable goals for the student to reach. The IEP should be reviewed at least once a year. The Individuals with Disabilities Act (IDEA) is the federal law that mandates all public schools to identify, evaluate, and provide a free appropriate public education to a student with a disability. It also mandates the use of an IEP.

Instructional Minutes. Refers to the amount of time the state requires teachers to spend providing instruction in each subject area (School Wise Press, 2010).

Nova Net. A comprehensive, online courseware system, designed for grades 6-12, that meets countless needs. It has the ability to deliver thousands of hours of research and standards-based, interactive curriculum, to integrated assessment and student management (Nova Net, 2010).

Night School. A school that holds classes in the evenings for students who cannot attend during the day (Webster’s, 2010).

NCLB (No Child Left Behind). Signed into law by President George W. Bush in 2002, No Child Left Behind sets performance guidelines for all schools and also stipulates what must be included in accountability reports to parents. It
mandates annual student testing, includes guidelines for underperforming schools, and requires states to train all teachers and assistants to be “highly qualified” (USDOE, 2002).

Online Learning. Courses can be taught entirely – or partly – online making use of a variety of technological elements. According to Salmon the word ‘online’ has historical links to the telegraph when messages were sent through a machine and latter via a special telephone line rather than produced by hand. The more modern meaning of ‘online’ usually refers to using a computer linked to the internet via a telephone line (Salmon, 2000).

Plato. As the first and most innovative educational technology company, Plato continues to lead in providing prescriptive, personalized instruction, technology-based teaching tools, and standards-driven assessment and data management to facilitate continuous academic improvement for K–adult learners (Plato, 2010).

Technology-Based Instruction- refers to the use of technology, especially computers, in most or all instruction (Phillips, 2005).

Traditional School. A long-established and generally accepted custom that is found in schools that society deems appropriate (AEI, 2005).

Virtual Credit. A class that a student takes via the computer to earn the same credit that a student will achieve via the traditional classroom setting. This credit is monitored by a certified teacher and allows the student to work at a self-paced level (NACOL, 2008).
Virtual School. Virtual school refers to an institution that is not “brick and mortar” bound. All student services and courses are conducted through Internet technology. The virtual school differs from the traditional school through the physical medium that links administrators, teachers, and students (Technology Source, 2010).

Webcast. A webcast is a media file distributed over the Internet using streaming media technology to distribute a single content source to many simultaneous listeners/viewers. A webcast may either be distributed live or on demand. Essentially, webcasting is “broadcasting” over the Internet (Wikipedia, 2010).
Organization of the Study

The study is divided into five chapters, a selected bibliography, and appendixes. The remaining portions of the study consist of the following:

1. Chapter two of this study contains a broad overview of current literature related to credit recovery programming with a specific emphasis placed on the use of web-based curriculum and instructional strategies. It details historical events not only in public education, but generally in American culture which have pushed the need for development and expanded utilization of online credit recovery programs.

2. Chapter Three contains descriptions of the research methods, procedures, and processes used to conduct the study.

3. Chapter Four summarizes the survey responses and provides an analysis and interpretation of the data gathered.

4. Chapter Five contains the content of the study, a summary of the study, major findings, discussion, and conclusions.
CHAPTER II

REVIEW OF THE LITERATURE
Chapter II

National Calls for School Reform

As the United States has slowly lost its foot-hold as one of the world’s strongest economic powers, citizens and politicians have struggled to determine the cause and find a solution to the problem. Historically, American public schools were identified as the most important factor leading to other nations making either economic or strategic gains to surpass the United States in world affairs. A pattern of alarm about the quality of American education began in 1957 when the Russians were the first to enter the “space-race” by the launching of Sputnik. In 1983, the National Commission on Excellence in Education (NCEE) conducted a research study and submitted a report to the United States Department of Education and the Secretary of Education titled “A Nation at Risk.” The NCEE report strongly suggested public education was delivering a watered-down curriculum and there was a need for schools to focus on primary literacy strategies. “A Nation at Risk” supported its conclusions that America’s public schools were not doing an effective job in science, math, and language arts by pointing to the decline in SAT scores in comparison to other industrialized
nations. The findings of a follow up study in 2003, “A Nation Still at Risk,” showed there had been very little change in the academic status of American students since the publication of the 1983 original report and recommendations. Recently, confidence in American public education has been shaken by the release of a documentary called, “Waiting for Superman.”

The documentary presented an emotional exploitation of community perceptions about public education, and made yet another call for school reform. The premise for “Waiting for Superman” was that the problem with American education is a result of teachers’ unions, reluctance to accept change, politics, and the fear of the education “establishment” to deviate from the status quo. Rather than focusing on broader social and economic reasons for the relative poor academic performance of public schools as in the past, the clarion call for educational reform became “schools can be fixed” and reset to improve the academic performance of every child. Thus, no child would be left behind in the United States and the status quo would no longer be acceptable. Schools would need to compete in a marketplace oriented educational environmental environment. The “charter school movement” was given bipartisan political support.

According to former Washington D.C. Chancellor of Public Schools, and celebrated educational reformer Michelle Rhee:

“Spending on schools has more than doubled in the last three decades, but the increased resources haven’t produced better
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

results. The U.S. is currently 21st, 23rd, and 25th among 30 developed nations in science, reading, and math, respectively. The children in our schools today will be the first generation of Americans who will be less educated than the previous generation” (Rhee, 2010, p. 37).

The national call for educational reform was alive and well in the second decade of the 21st century.

The Individual Student

Improving the overall quality of the student was viewed as essential to keep the future American generations competitive in the global economy. There are multiple solutions to academic struggles in the United States. The focus of this dissertation was based on the premise that utilization of web-based curriculum and technology could assist struggling students to find their path to a better education. The study displayed how the utilization of technology can assist in the acquisition of knowledge and skills that will increase American competitiveness in a global society. The problem in the eyes of the American public with public schools appears to be captured by the fact that the United States is currently ranked 21st, 23rd, and 25th among 30 developed nations in science, reading, and math, respectively. The children in schools today would be the first generation of Americans who will be less educated than the previous generation (Rhee, 2010, p. 37).
Diane Ravitch, a leading national educational policymaker and historian declared, “We know that education can be an arduous process. Countries use different approaches based on societal acceptances, but effective education always requires enormous efforts. Whether success is achieved depends on the development of a rigorous and progressive curriculum while at the same time providing all students the opportunity to learn” (Ravitch, 2010, p. 225).

Time and time again we have witnessed students who experience a lack of academic success fall farther and farther behind in pursuit of their academic goals. The reason for the lack of success can be attributed to a wide variety of factors. These factors include, but are not limited to, students in diverse classrooms that do not address their multiple learning styles, and students who grow up in homes that do not appreciate the importance of working to achieve success in the classroom (T. Long, Superintendent of Jay County, Indiana schools, personal communication, February 1, 2011).

The fundamentals of a good education are found in the classroom, the home, the community, and the culture (Ravitch, 2010, p. 225). Whatever the reason for the lack of student academic success, it can lead to a feeling of despair. Students in this category can continue on a downward spiral, and without intervention, may eventually lead to dropping out of school. However, it is possible for students who are unsuccessful in the traditional
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

learning environment to achieve success with the assistance of an alternative means of instructional delivery. According to Schargel and Smink (2004) “When educators show students that there are different ways to learn, students find new and creative ways to solve problems, achieve success, and become lifelong learners. With success, students have the opportunity to develop an enhanced esteem associated with learning. This process creates a self-reinforcing ascent of increased performance” (p. 42).

It has been noted in several studies that at-risk students are those, who for a variety of reasons, have become disengaged in school. The feeling of failure and a lack of success creates a sense of hopelessness. Based on the preponderance of available research, we can safely say that student at-riskness is most frequently manifested by poor academic and social skills that promote a general disconnection with the school culture. This sense of hopelessness serves as a barrier that prevents academic progress, and goal fulfillment and leads to dropping out of school. We can further note that quite a bit of educational effort and funds are invested in remediating these factors (McDonald, 2002).

Financial Ramifications

Another key point to consider, are the financial ramifications to educational institutions, created when students drop out of school. The financial ramifications created by students who do not finish high school have
three levels of impact on the school community. The first level is felt by the student who drops out of high school. According to the U.S. Bureau of Labor Statistics, a student with no high school diploma earns on average $23,400 annually, whereas a student who has a high school diploma earns on average $30,400 annually (Rouse, C.E. 2005). Over the course of a lifetime a student with a high school diploma will make $364,080 more than a student without a diploma (Watson and Gemin, 2008).

The second level is the economic impact placed upon the school corporation. This financial pitfall is created with the reduction of ADM (Average Daily Membership). An Indiana school district receives its state funding based largely on student enrollment. When students drop out, school corporations lose the funding for that student, which is received in the form of a state grant or basic tuition support. Additionally, funding opportunities from federal and state grants based on ADM are lost as well. In Indiana, school corporations receive anywhere from $5500-$10,000 per student in terms of tuition support based on the funding formula (IDOE Office of School Financial Management, 2011). Additional money that is connected with the individual student may be obtained from the Special Education Grant and Vocational Education Grant.

The third level of impact as a result of a student dropping out of school is experienced by the local economy. On average, dropouts are more likely to be unemployed than high school graduates and to earn less money when they
eventually secure work. Employed dropouts in a variety of studies reported working at unskilled jobs or at low-paying service occupations offering little opportunity for upward mobility (DoSomething.org, 2011). Dropping out, in turn, causes other secondary, indirect problems such as: high school dropouts are also more likely to receive public assistance than high school graduates who do not go on to college. In fact, one national study noted that dropouts comprise nearly half of the heads of households on welfare. This increased reliance on public assistance is likely due, at least in part, to the fact that young women who drop out of school are more likely to have children at younger ages and more likely to be single parents than high school graduates. Finally, there is a noticeable increase in prison populations. The individual stresses and frustrations associated with dropping out have social implications as well: dropouts make up a disproportionate percentage of the nation’s prisons and death row inmates. One study found that 82% of America’s prisoners are high school dropouts (DoSomething.org, 2011). When it is all said and done, “one high school graduate saves states an average of $13,706 in expenses. It is estimated that states could save nearly $17 Billion if these young people earned diplomas” (Americas Promise Alliance, 2008).

In the metro Detroit, Michigan area, schools were facing similar financial hardships because of students dropping out of school. In 2009 one particular school district was $2.7 million in the red. Their plan was to start a cyber-school as an avenue to keep school age kids working towards
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

graduation and to assist them in digging out of debt. “Sometimes crisis is the brainchild for innovation,” said Glen Taylor, executive director of innovation and federal programs for Westwood School District (Schultz, 2010, p. 2).

When looking at the difficulties many students face in a traditional setting it is important to understand that;

“Students don’t suddenly drop out of school in the 10th or 11th grade; they dim out over time, because school has failed to meet their needs. Students need the energy of a vibrant school culture to keep their lamp of learning from dimming out.

Students need to be surrounded by educators who believe they can succeed and understand that achievement takes more time and effort for some students than others” (Schargel et al, 2009, p. 87).

The Use of Technology

The practical use of computers may be one way to prevent students from becoming disengaged. This can be accomplished by creating an environment that provides increased student enjoyment that can lead to increased learning. The increased enjoyment assists the classroom teacher to improve both the quantity and quality of engagement by students.

“Technology is about to break down political barriers. Improvements that have been nearly impossible will become much easier to bring about and improvements that we cannot anticipate will follow in their
wake. Technology will make it easier to differentiate instruction. This innovation will enable students at vastly different achievement levels to master broad and demanding curricula, something even the best teachers struggle to bring about today” (Moe and Chubb, 2009, p. 97).

On the flip side, the current economic crisis has forced many schools to cut back on the amount of course offerings provided to students. Scaling back curricular offerings can assist in reducing teaching staff as a cost cutting measure if a school corporation is forced to reduce its budget. Some schools have migrated to web-based curricular offerings as a means to maintain a broad course catalog for their students.

“It has been proven that the conventional method used to stem the dropout crisis does not work. In Detroit’s Metropolitan area, another unconventional method being utilized to lure students is the use of a cyber school. “Last year the cyber school enrollment grew from 180 to 540 in February. Another 80 students were on the waiting list, and more names were expected to join the list as the corporation office had received more than 175 phone inquiries” (Schultz, 2010, p. 3).

Glen Taylor, the previously mentioned executive director of innovation and federal programs in a Michigan school district stated: “It’s an acknowledgement that the educational setting we have created and established for all kids is not for all kids.” Taylor went on to state “the
appealing part of this system (credit recovery system) is that it combines the use of computer based instruction with a live mentor. The setting can be situated in order to provide students a virtual environment, or it may be one that allows students to come to a school at the end of a normal school day to work on their coursework in a staffed computer lab.” “In this modern age of technology, we are no longer confined to a box where you have 30 seats and a teacher in front, said Arthur Carter, superintendent of Highland Park Schools, those days are slowly passing by” (Schultz, 2010, p. 3).

According to Indiana State Superintendent of Public Instruction Tony Bennett, every high school student in Indiana should have to take at least one online course before graduating. Bennett wants students enrolled in online courses "to make sure students are prepared for the technology they will face in college and the workforce" (Bradner, 2011). Bennett also believes “if we don't address this issue of technology for all children, I think we're going to be setting up the next achievement gap.”

As innovative educational approaches continue to evolve, it is important to ask the financial questions that restrict this type of change. Many school corporations are utilizing facilities that were constructed four or five decades ago. They are not equipped to handle the infrastructure necessary to add advanced learning technology, and the expense to do so can be a limiting factor.
Delivering a Web-Based Curriculum

Learning doesn’t always occur during standard school hours. Using web-based online curriculum programs allows a school corporation to complement their curriculum with an opportunity to extend learning beyond the traditional school day with opportunities; after school, before school, summer school, ESL, migrant, Saturday, or home-extension programs. Web-based curriculum programs provide academic opportunities beyond the classroom, and it complements regular academic programs. Additionally, it supports academic development through tutoring, mentoring, and homework. Extending a learner’s experience means extending the positive impact the classroom can already make, on everything from grades to academic development to healthy self-esteem while at the same time keeping students on track to graduation through online credit recovery programs (Plato, 2011).

Educators understand that a key element to the improvement of academic performance is consistency and repetition in many subjects as well as the ability to make real-world connections to others. “Best practices” indicate that homework and practice are instructional techniques that provide students with opportunities to deepen their understanding and skills relative to content that has initially been presented to them (Marzano, 2001, p. 60). However, homework and practice does not address the needs of all learners. In Bowling Green Kentucky, the Lighthouse Academy was opened in 2001 and was an alternative school focused on meeting the needs of at-risk
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

students. The focus of the Lighthouse Academy was designed to provide at-risk students with more personal attention in an effort to increase academic performance. However, the daily attendance at the academy was dismal at 64%, and only one out of every six students was successful in reaching graduation.

The following year the academy made a switch to a company called Ed Options. Ed Options offered the academy a web-based curriculum option in which students could work through homework and take examinations online. The programming was designed to individualize programming based on the need of the student. In return, the classroom teachers spent less time on grading and preparing homework and more time with the students. Each students program was unique in the fact their coursework was based on their level of content mastery. The result revealed an attendance rate that improved from 65% to 95%. Also, over this three year period, 167 students completed course requirements necessary to catch them up for graduation.

Former New York City Chancellor, Joel Klein has served as an advocate for the use of web-based curriculum and “online gaming techniques” to keep today’s student on the path to graduation. During his time as chancellor, he became convinced of the need to move away from what he calls “this sort of twentieth-century model” of one teacher trying to master all the content and information and deliver it to 25 children (Heilemann, 2010). The former chancellor champions the need for the utilization of “virtual tutors” and
online lessons that contain real-time data in order to create a highly individualized model of instruction for today’s students (Heilemann, 2010).

Addressing the Dropout Program with Technology

Implementing a program that addresses the need of the “at-risk” learner is only part of the battle. Identifying the students who are current or potential candidates for this type of program is the second part of the battle. In general, when students are described as “at-risk” they represent approximately one-third of the total student population. They are the most likely students to dropout of school. In most cases these students come from, the following groups; students from low socioeconomic status (eligible for free or reduced lunch), minority students, English as a Second Language students, students with learning disabilities, gifted students whose needs aren’t being met, capable students who are not succeeding in the classroom, and disruptive students.

It is imperative that schools have a tool in place to assist in the identification of “at-risk” students to ensure the deployment of control measures quickly and effectively. In a 2011 interview with Audio Journal, National High School Center Director Joseph Harris described how school leaders could use the Center’s “Early Warning Signs Tool” to uncover the issues contributing to dropping out of high school, and identify the students who have the most potential for dropping out of high school. The utilization of any tool which focuses on the detection of warning signs must be embedded
in the entire staff to ensure students are quickly identified and do not fall through the cracks. “Nearly one-third of all high school students leave the public school system before graduating (Swanson, 2004) and the problem is particularly severe among students of color and students with disabilities (Greene & Winters, 2005; U.S. Department of Education, 2006).

Students at risk, especially those who eventually drop out, typically have some or all of the following characteristics: a history of academic failure, older age in comparison with classmates (typically due to retention), emotional and behavior problems, frequent interaction with low achieving peers, a lack of psychological attachment to school, increasing disengagement with school. But knowing this information is only part of the battle for school personnel. As educators direct their focus on potential dropouts, school personnel must become increasingly aware of the necessity to address their wide variety of needs.

The stories, insights and reflections that came out of a study (student survey and focus groups) conducted by Bridgeland, et al (2006) demonstrated the importance of the “student voice” in the discussion about what must be done to improve high school graduation rates and to prepare struggling students for a productive future. While most dropouts blame themselves for failing to graduate, there are things they say schools can do to help them finish. Students were clear that teaching must be changed and improved and curricula to make school more relevant, engaging, and make the connection
between school and work. It is eminent to stress there are more benefits derived from seeking ways and means to ensure students stay in school until graduation, rather than allow them to drop out. To increase the number of students who graduate from high school, the nation’s secondary schools must be dramatically improved (Alliance, 2007, p.4). Additionally, the schools’ curriculum should be reviewed and evaluated to take into consideration the student’s diverse background, experiences, and educational capacities. Curriculum should be consistently updated to reflect real-world challenges. The programs should be presented in such a way that students would perceive them as relevant and interesting. Finally, support from parents, teachers and school administrators could never be overemphasized. Sometimes, students are just looking for the right advice, at the right place, at the right time.

During the past ten years, educators have begun to focus on the one characteristic that may predispose a student to academic failure and this is poverty. Dr. Ruby Payne (2001), *A Framework for Understanding Poverty*, tackled the issue of how poverty affects learning. Dr. Payne described how the reality of living in poverty can bring out a survival mentality and turn attention away from opportunities taken for granted by people in the middle and upper class. School personnel who work with people in poverty need a better understanding of how different the world of poverty is in most cases from their world. Most teachers today come from middle-class backgrounds.
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

In an educational setting, economic class differences create conflict and challenges for both teachers and students alike. Educators must be aware that access to technology at home for students who live in a world of poverty is limited, so access at school is imperative.

As previously stated, one particular alternative to the typical classroom setting is the use of technology. By utilizing technology teachers can activate the interest of students and encourage participation in learning activities (Smink & Schargel, 2004, p. 213).

The story of Arturo, a high school junior who was 30 credits behind in his graduation track is a nice example of what technology can do for a student who was simply not interested in school. One day, in one of his classes, he noticed an old computer tower sitting in the corner. The tower was scheduled for re-cycling as the school site IT administrator had dubbed it obsolete. Arturo asked his teacher if he could work on the tower. Arturo proceeded to repair the tower from spare parts and within two weeks had upgraded the old computer, added new programming, and connected it to the school’s web by integrating the old machine with newer technology. Does Arturo know math? Does Arturo know computer science? Not in the traditional sense. The problem for Arturo is that few, if any, will take the time to recognize his talent with computers if he does not fit into the mold of traditional education (Edarticles.com, 2009, p. 5).
Resistance to Technology

The utilization of technology as a means to deliver instruction has come with some resistance. Teachers unions have voiced concern that the utilization of technology and alternative delivery of coursework will eliminate positions. However, according to Daleville Superintendent Paul Garrison “the district simply can’t afford to stick its head in the sand, he said. Yeah, we might lose some students who decide to enroll in a setting that utilizes technology, Garrison admits. We have to give a product that is strong enough here to keep them so they stay, observes Superintendent Garrison (Indiana Education Insight, 2011). As with many schools, this corporation has realized that no longer is their corporation the only option. More and more students and parents are being made to realize that other options may exist in place of the stereotypical classroom “We decided to adopt the reality that K-12 education is now a very competitive enterprise, and we have to serve our clients, the parents and students, as best we can, he explains (Indiana Education Insight, 2011).

As school administrators work to establish a partnership with local teachers, it is important for them to highlight the fact that the support students receive from their teachers is essential in many cases to the students success. While students make their way through the courses on their computers, the teacher of a course, who also is in the lab, plays a critical role, “because students still need support,” says Downing. “The teacher plays
the role of any teacher, explaining concepts and acting as a motivator. There isn’t a curriculum around that really imparts knowledge by itself. We know that even in the virtual communities,” she asserts. Without the involvement of teachers, she continues, students in credit recovery programs “would fail yet again” (Dessoff, 2009).

Another essential ingredient is the availability of tools and technologies that can help students find their voice and use it to lead (Daniels, Bizar, & Zemelman, 2001, p. 193). It is therefore the responsibility of the public school to maintain an open mind and flexibility in their approach to the delivery of curriculum. Illinois is one state, in particular, that has started using advances in technology to assist the at-risk student. According to Sarah Antrim-Cambium, the Illinois Virtual High School Coordinator for participating schools in Cook County, “online instruction has helped several at-risk students finish their high school education and earn their diploma, when it’s likely many of these students otherwise would have dropped out of the system (Ascione, 2009, p. 1).

Technology has often proven to be a resource and tool of convenience. However, educators are finding that its usefulness can be more than a resource for information. It can be utilized as a tool to engage the otherwise disengaged and challenging student. Professional Learning Communities, as described by Richard DuFour, is a powerful way of working together that profoundly affects the practices of schooling. But initiating and sustaining
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

the concept requires hard work. It requires the school staff to focus on learning rather than teaching, work collaboratively on matters related to learning, and hold itself accountable for the kind of results that fuel continual improvement (DuFour, 2004, p.10). The use of technology is an attempt to address what has become an emerging learning style in several of today’s students. Schools should possess and utilize whatever helps students to learn, from books to computers, from science labs to sports equipment (Daniels, Bizar, & Zemelman, 2001, p. 193).

Web-Based Curriculum and Opportunities for Students

When we discuss on-line curriculum, we are not simply talking about the use of technology. It is also about young people advocating for themselves and secondary schools making room for kids to pursue their own interests and make some of their own decisions. It is important to understand that a key ingredient is also the availability of the necessary tools, materials, resources, and technologies that can help these individuals find their voice and use it, loud.

As we look at the many opportunities web-based curriculum provides for students who are in need of recovering credits, it is important to realize that this programming can also provide opportunities for students who don’t otherwise possess the means to move ahead in their academic pursuits. “The online program in Illinois is not for just at-risk students who are being served in Illinois. Online instruction is also helping more than 3000 traditional
students in the state fulfill certain requirements and expand their access to specialized classes that might not otherwise be possible.” (Ascione, 2009)

Similarly, in the state of Texas, the Houston Independent School District is plagued with a high at-risk student population prone to dropping out of school. In the spring and summer terms, 6,127 HISD students earned 9,774 credits in such courses, which are generally taken in conjunction with a full load of regular classes. About 2,500 more students are enrolled this fall (Thevenot and Butrymowicz, 2010).

Over time, the expanded availability of web-based curriculum has revealed several concerns that need to be addressed prior to its effective application:

(1) Will the Web curriculum offered be congruent with the institution’s mission and strategy? (2) Do you have administrative support? (3) Are there institutional obstacles to adopting a Web curriculum? (4) How will you handle intellectual property issues? (5) How will you compensate instructors for offering or administering Web courses? (6) Do you have clear, well-defined criteria for selecting the classes to be offered through the Web? (7) What facilities or capabilities are available to assist in the preparation and delivery of course materials? (8) What methods will be used to deliver class content? (9) How will student progress be assessed? (10) Do your students have the
skills necessary to use the Web and participate in class? (11) What course delivery platform will you use? And (12) where will the class materials be maintained?” (McAlister, Rivera, & Hallam, 2001).

These issues are crucial and significant factors that need to be resolved to determine the applicability and effective implementation of web-based curriculum, specifically for ‘at-risk’ students. The rates of students dropping out of school continue to climb. “Every September, approximately 3.5 million young people in America enter the eighth grade. Over the succeeding four years, more than 505,000 dropout, an average of nearly more than 2805 per day of the school year. Picture it: Every single school day more than 70 school buses drive out of America’s schoolyard, filled with students with student who will not return” (Smink & Schargel, 2001, p.9). The task at hand is to continue to explore avenues that will prove to be effective in reversing this trend.

Why are the American people increasingly concerned with the high school dropout? A primary concern can be pinpointed to the economy. The United States has slowly been losing its foothold as one of the world’s economic powers. “The longstanding dropout problem may be especially thorny now, with a looming recession. Cutting the number of dropouts in half would generate forty-five billion dollars annually in new tax revenue according to America’s Promise, assuming there are ultimately enough jobs to
accommodate the graduates” (Fields, 2008, p. 1). The studies conducted by Alliance (2007), point out that dropouts are a drain on the economies of each state and the nation. Lower local, state, and national tax revenues are perhaps the most obvious consequence of higher dropout rates; even when dropouts are employed, they earn significantly lower wages than graduates. State and local economies suffer further when they have less-educated populaces, as they find it more difficult to attract new business investments. Indiana High Schools endured nearly 23,600 students who did not graduate in 2010. In a study it was estimated that the lost lifetime earnings for this lone individual class of dropouts will be over 6.1 billion dollars. The state could save as much as $284 million in health care costs over the lifetimes of each class of dropouts if they would have earned their diplomas (Alliance, 2010). Simultaneously, these entities must spend more on social programs when their populations have lower educational levels. Dropouts represent a tremendous waste of human potential and productivity, and reduce the nation’s ability to compete in an increasingly global economy.

There are a number of reasons for high school drop outs that range from personal concerns, family issues, transportation problems, and even work-related reasons.

For some students, dropping out is the culmination of years of academic hurdles, missteps, and wrong turns. For others, the decision to drop out is a response to conflicting life pressures --
the need to help support their family financially or the demands of caring for siblings or their own child. Dropping out is sometimes about students being bored and seeing no connection between academic life and "real" life. It's about young people feeling disconnected from their peers and from teachers and other adults at school. And it's about schools and communities having too few resources to meet the complex emotional and academic needs of their most vulnerable youth. (Furger, 2008, p. 1).

Parents, teachers, and school administrators have a moral responsibility to look for appropriate measures to ensure that all high school students graduate. Furthermore, school administrators are obligated by Indiana law (I.C. 20-33-2-28.7, 2011) to emphasize the importance of graduating from high school.

The Alliance for Excellent Education provides the following pertinent information:

Students graduating from high school, for example, provide both economic and social benefits to society. In addition to earning higher wages, which results in attendant benefits to local, state, and national economic conditions, high school graduates live longer (Muennig, 2005), are less likely to be teen parents (Haveman et al., 2001), and are more likely to raise healthier, better-educated
children. In fact, children of parents who graduate from high school are themselves far more likely to graduate from high school than are children of parents without a high school degree (Wolfe & Haveman, 2002). High school graduates are also less likely to commit crimes (Raphael, 2004), rely on government health care (Muennig, 2005), or use other public services such as food stamps or housing assistance (Garfinkel et al., 2005). Additionally, high school graduates engage in civic activity, including voting and volunteering in their communities, at higher levels (Junn, 2005) (Alliance for Excellent Education, Issue Brief, 2007, p. 1-4).

Any new approach to ensure the adequate progress of the ever increasing at-risk student population is not without its hurdles. One of the first questions that must be answered when attempting to be innovative is; “can we customize economically within the present factory model schools?” (Christensen, 2008, p. 35) School corporations must remember, as they continue to look into new and unique approaches for utilizing web-based curriculum, the program itself is not without its shortfalls. There are indeed factors which individual school corporations will have to overcome as stated Dr. Tim Long, Superintendent of the Jay County Indiana School Corporation. He agreed that the push to meet the needs of all learners is integral in increasing the overall success of students in any given school corporation (T. Long, personal communication, August 1, 2009).
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

However, Dr. Long, who has 25 years of experience as a superintendent, noted that there are several barriers that must be cleared before implementing a new program, such as web-based curriculum. Some of these barriers included ensuring that the technology is available to at-risk students. Some at-risk students may not have a computer or the internet in their home. “We must be prepared to provide the necessary access to this technology if we expect any level of success” (T. Long, personal communication, August 1, 2009). There are a variety of ways in which school corporations are thinking outside of the box to find creative ways to assist in this process. Whether it is opening the school computer lab after hours to provide access for students who do not possess the necessary technology at home, or providing a password so that students may log into the application from home; creativity and flexibility are a staple in advancing the use of web-based programming.

Another barrier for successful implementation of web-based programming is the initial cost of the technology. For example, costs associated with software, hardware, and the appropriate user license required for specific programs is expensive. The financial impact on each corporation varies depending on the level of services desired and the infrastructure that is already in existence. The goal is to sustain a web-based credit recovery program, keeping students in school, (either physically or virtually) and over
a period of time the program would generate enough revenue in the form of tuition support to pay for itself.

Some school corporations have struggled to grow their distance education services and programs as a result of several factors, such as a lack of statewide infrastructure initiatives (bandwidth, especially in rural areas), lack of policy and leadership for distance education technologies at the state level, lack of an outreach sensibility, lack of “buy in” at the school level, The proverbial “last mile” challenge – the inability to extend sufficient network bandwidth all the way to campuses and into classrooms – has been difficult among primary and secondary education users (Greenberg, 2009, p. 9).

In conclusion, there appears to be global potential for the utilization of web-based curriculum to assist students in the pursuance of their academic goals. In Thomas Friedman’s book, The World is Flat, he went into great detail on how technology has flattened the world into one playing field, specifically in the world economy. Web-based curriculum has the potential to do the same in the academic world. Students who have personal situations that prevent them from attending school in our current “factory model” of the 1950’s, i.e. five days a week for seven hours a day should not be penalized. Rather, every effort financially feasible must be sought to provide them with the academic opportunity necessary for success in today’s global economy.

On the other end of the student rainbow web-based curriculum can be
beneficial to high achieving students as well. School corporations which are forced to spend a majority of their instructional dollars on remedial activities, in an effort to improve the overall performance of their student body, often times short change the students who excel academically. Web-based curriculum can be utilized to increase the advanced curricular course offerings to this student-population as well.

In addition to the delivery of hope to at-risk students in our own back yard, web-based curriculum can offer the same hope on a global basis. During the researchers recent deployment in Afghanistan a soldier in need of math remediation approached him for assistance. Because the operation-tempo was demanding and the soldier was stationed in a combat zone, his resources were limited. After discussing his need and brainstorming the specific course work needed he enrolled the soldier in PLATO, one of the various web-based curriculum software programs on the market. In the evenings when the soldier completed his work and or was not on a mission, he was able to go back to his room and work through the necessary math courses that would lead to accomplishment of his educational goals. This was just another example of how web-based curriculum can help people achieve their academic goals even in an “at-risk” environment, a real combat zone in the war on terror.
CHAPTER III

RESEARCH METHODOLOGY
CHAPTER III

Purpose
The focus of this research was to determine if web-based curriculum software is a viable way to keep at-risk students engaged in the school process. Thus, allowing for credit recovery, or credit acceleration, and ultimately helping them to secure a diploma from high school. The research was guided by the following questions:

Research Question 1
Has utilizing web-based curriculum software assisted the at-risk student population in the recovery of lost credit in order to graduate from your high school?

Research Question 2
Does the school administration and greater school community support an alternative approach to traditional instructional delivery which utilizes web-based credit recovery/acceleration options?

Research Question 3
Has the lack of student technology skills or access to technology prevented students from accessing web-based curriculum software applications?
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

The following sections discuss the research design, sampling method, research instrument, data collection procedures, methods for data analysis, and limitations of the study.

Research Design and Pilot Procedures

A quantitative research study using a survey questionnaire as the primary method for gathering data was deemed most appropriate. The survey questionnaire was designed for teachers and administrators in school corporations of East Central Indiana who utilize web-based curriculum for the purposes of online credit recovery. The researcher conducted an interview with five specific central office administrators whose corporations were known to utilize web-based credit recovery programs to expand the responses of the teachers and administrators who answered the survey questionnaire. Before beginning the study, the study survey was piloted with a select group of individuals who serve as Superintendents in East Central Indiana and have experience with the utilization of web-based credit recovery programs. Five interviews were conducted in an effort to expound further upon the key components of the research as well as to identify successful tactics alternative educators has utilized to reduce student dropouts. Once completed and the survey was revised, this pilot group was also asked to take the survey to assist in validating the instrument. Upon completion of the survey, these five individuals were asked for their written or verbal feedback evaluating the clarity and appropriateness of each survey question.
Additionally, the participants were asked for any specific or overall comments they had in an effort to further refine the research instrument. A few clarifications were suggested to assist with the wording. These responses, coupled with the expert feedback, were utilized to refine the survey instrument (Creswell, 2000) for construct validity.

Description of the Position

The study included schools in East Central Indiana with recognized alternative education programs in the state of Indiana. These programs were certified and recognized by the Indiana Department of Education. The total number of potential respondents that served either as a guidance counselor, alternative education educator, or administrator was 100. Participants received an email about the nature of the survey, including a direct link to the website for the survey, on May 27, 2011. The survey for this study was completed by various administrators in 20 high schools located in East Central Indiana. The participants had varying degrees of experience and work in positions which were directly involved with the placement or oversight of students in programs utilizing web-based curriculum and online programming. The positions held by the survey participants included principals, guidance counselors, alternative school directors, and classroom teachers. Forty-four respondents started the survey. However, respondents who failed to complete 50% or more of the items were eliminated from data analysis, leaving the total survey pool at 40 respondents, or 40% of the
potential respondents. The response rate of 40% may appear low; however, according to Nair & Adams (2009) a low response rate is typical for a web-based survey. Furthermore, in a study by Shih and Fan (2009), they reported the average response rate for electronic surveys to be approximately 33%. The response rate for this study was 40%. The use of an online survey was chosen for convenience, cost savings, and the freedom it provided the respondent for open ended responses.

Trouteaud (2004) studied methods for improving response rates to web-based surveys. He found that the way the initial invitation was drafted and the number of follow up emails were critical to increasing response rates. Trouteaud found the optimal number of reminders or follow-up emails was two. Two follow-up emails were used in this study. The response rate after the first reminder email did not change from the original response rate which was 32%. A second email reminder and request was sent in an effort to increase the percentage of responses. Eight more respondents participated and completed the survey bringing the total response rate to 40%. The researcher then locked the online survey preventing further participation and began the statistical analysis.

The Instrument

The survey questionnaire was guided by the research questions and designed to determine the challenges and or difficulties encountered by program administrators as they utilize web-based credit recovery. The
questionnaire utilized a five point Likert Scale with choices ranging from strongly disagree to strongly agree. The questionnaire contained 24 questions. The questionnaire was validated using the pre-test method where a sample of superintendents answered the questionnaire, provided feedback, and recommendations. Of the 100 surveys requests emailed to potential respondents, 40 were completed.

Data Collection

After receiving approval from the Institutional Review Board (IRB) at Ball State University, 100 surveys were e-mailed to administrators, teachers, and guidance counselors in 20 East Central Indiana Schools that utilize web-based credit recovery programming. The names and addresses of these school corporations were retrieved from the Indiana Department of Education website at http://mustang.doe.state.in.us/dg/schools/welcome.html. Potential Respondents were identified in two specific manners; Directors of state approved programs were identified on the IDOE Website at http://www.doe.in.gov/alted/altedlinkpg.html under the link; Directory of Approved Alternative Education Program Grants for 2010-11. Principals, guidance counselors, and teachers contact information was obtained from the home page of each school in the survey population. Included in the e-mail was a (a) cover letter with instructions for completing the survey, (b) a website address that would provide the individual with the opportunity to complete the survey electronically, and (c) a copy of the informed consent.
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

Additional graduation and dropout rate data was retrieved from the IDOE website at http://www.doe.in.gov/data/reports.html.

Data Analysis

This study was designed to examine the success or failures experienced by school corporations which employed web-based curriculum credit recovery programs. The purpose of this descriptive quantitative study was to add to the limited body of knowledge regarding web-based credit recovery programs and determine factors that may limit or support the utilization of technology, as a means to address the needs of our states at-risk student population. Consequently, reducing the student dropout rate will increase the chance for students in this category to earn a diploma. The steps used to conduct this study included: collecting quantitative data using a web-based (electronic) survey, analyzing the data to describe the level of support the various key school community stakeholders had in terms of the utilization of web-based curriculum programs.

Statistical Measurement

The three research questions guided this study. The data collected and analyzed provided responses to the research questions and presented an indication of the effectiveness of web-based curriculum in assisting at-risk students obtain high school credit. Statistical procedures, including descriptive statistics were used to analyze the data using SPSS 19.0 software. These procedures determined whether a statistically significant relationship
exists between the independent variable (web-based curriculum) and the
dependent variable (credit obtainment). Descriptive Statistics and a
frequency table were run to identify and compare and contrast the level of
support from the five identified key stake holder groups in the study. The
Pearson r Correlation was utilized to measure the strength between two
linear variables, variable (A) (dropout rate) and variable (B) (graduation
rate). The assumption behind this procedure was to identify the statistical
relationship between the two variables. For reliability, the Cronbach's Alpha
was utilized to measure the internal consistency of graduation rate and
dropout rate in an effort to determine how closely related the two variables
were as a group. A "high" value of alpha is often used (along with substantive
arguments and possibly other statistical measures) as evidence that the
items measure an underlying construct. “Internal consistency reliability
estimates are special cases of coefficients of generalizability” (Long et al.
1985, p. 94).

Limitations

The following limitations were determined when completing the data
collection and analysis. The first limitation was that the responses were
based on surveys and self-reporting. The second limitation was simply that
the school corporations do not implement web-based online credit recovery
programs exactly the same way. A third limitation was the fact that this
study was limited to school corporations in East Central Indiana.
CHAPTER IV

RESULTS
CHAPTER IV

Introduction

The goal of this study was to examine the effectiveness of web-based curriculum in assisting at-risk students recover lost credits. The researcher used quantitative research which was based primarily on an internet based survey. Various descriptive statistical tools were employed to present the findings of the study. The descriptive statistics used herein provided a simply way of describing what the data derived from the study indicated.

As stated in Chapter 1, this study examined the effectiveness of at-risk students recovering high school credit by using web-based curriculum. Students withdraw from school or fail to meet their academic potential for a variety of reasons. Many students struggle to find a place to fit, and because of this, have a difficult time achieving success. At-risk students often fall behind and simply do not have the means or will-power to “catch-up.” This chapter addressed three specific research questions:

1. Has utilizing web-based curriculum software assisted the at-risk student population in the recovery of lost credit and increased graduation rates?
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

2. Does the school administration and greater school community support an alternative approach that utilizes web-based credit recovery/acceleration options?

3. Has the lack of technology skills or access to technology prevented students from accessing web-based curriculum software applications?

Demographics/Participants

Each respondent was required to complete an informed consent. The survey population consisted of a variety of administrators, guidance counselors, alternative school directors, and teachers. Each respondent had direct contact with the at-risk student population and those students who are completing some type of credit recovery programming. The total number of respondents who completed the informed consent and participated in the survey was 40. Four respondents, who started the survey, did not complete the process. If a respondent did not complete at least 50% of the questions, the associated survey was not included in the data totals. The 40 respondents who electronically signed the consent form and participated in the survey constituted a 40% response rate. The data were presented in percentages and a pie chart for easy interpretation.
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

Question #1- The school is addressing the needs of at-risk students and providing opportunities for them to recover credits.

Table 4.1

<table>
<thead>
<tr>
<th></th>
<th>40 Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>40% Strongly Agree</td>
<td>40 Respondents</td>
</tr>
<tr>
<td>52.5% Agree</td>
<td>52.5% Agree</td>
</tr>
<tr>
<td>2.5% NA</td>
<td>2.5% NA</td>
</tr>
<tr>
<td>5.5% Disagree</td>
<td>5.5% Disagree</td>
</tr>
<tr>
<td>0.0% Strongly Disagree</td>
<td>0.0% Strongly Disagree</td>
</tr>
</tbody>
</table>

Questions #2- The administrators support the use of web-based curriculum as a measure of credit recovery in our school.

Table 4.2

<table>
<thead>
<tr>
<th></th>
<th>40 Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>70% Strongly Agree</td>
<td>70 Respondents</td>
</tr>
<tr>
<td>25% Agree</td>
<td>25% Agree</td>
</tr>
<tr>
<td>2.5% NA</td>
<td>2.5% NA</td>
</tr>
<tr>
<td>2.5% Disagree</td>
<td>2.5% Disagree</td>
</tr>
<tr>
<td>0.0% Strongly Disagree</td>
<td>0.0% Strongly Disagree</td>
</tr>
</tbody>
</table>
Questions #3: The school supports the use of web-based curriculum in terms of teachers involved, facilities, and finances.

![Bar Chart 4.3](chart1.png)

Question #4: The teachers support the use of web-based curriculum as a means of credit recovery in our school.

![Bar Chart 4.4](chart2.png)
Question #5: The community supports the use of web-based curriculum as a means of credit recovery in our school.

Table 4.5

Questions #6: Students support the use of web-based curriculum in terms of usage, appreciation, etc.

Table 4.6
Questions #7- When compared to past achievement, students in web-based curriculum programs achieve at or above past achievement levels.

Table 4.7

Question #8-Web-based curriculum has contributed to positive gains in our schools graduation rate.

Table 4.8
Question #9: There is evidence of an increase in the student’s on-task behavior when utilizing web-based curriculum.

Table 4.9

Question #10: When students make errors it is received with quick feedback and they have increased confidence.

Table 4.10
Question #11- Computer-Based instruction alone is successful as a method for helping students recover credits.

Table 4.11

Question #12- Web-based curriculum challenges students appropriately and gives them some choice or control over activities and instruction.

Table 4.12
Question #13- Computer based student-centered instruction helps create a learning for increased motivation.

Table 4.13

Question #14- The lack of interactive features of the face-to-face classroom such as immediate feedback, physical cues, and a sense of community does not affect student performance.

Table 4.14
Question #15-In our school, students must fail a traditional teacher led course before taking a web-based curriculum credit recovery course.

Table 4.15

Question #16- It is common for students to intentionally fail courses to avoid a teacher led classroom.

Table 4.16
Question #17 - The lack of technology skills eliminates some students from accessing web-based curriculum as a credit recovery tool.

Table 4.17

<table>
<thead>
<tr>
<th>40 Respondents</th>
<th>0% Strongly Agree</th>
<th>2.5% Agree</th>
<th>7.5% NA</th>
<th>52.5% Disagree</th>
<th>37.5% Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 Respondents</td>
<td>2.5% Strongly Agree</td>
<td>10% Agree</td>
<td>5% NA</td>
<td>72.5% Disagree</td>
<td>10% Strongly Disagree</td>
</tr>
</tbody>
</table>

Question #18 - Not all students have access to the technology necessary to utilize web-based curriculum.

Table 4.18
Question #19- Our school offers after-hours access to computer labs to make up lost credits using web-based curriculum.

Table 4.19

Question #20- We have expanded our use of web-based curriculum, as a means of credit recovery, over the past five years.

Table 4.20
Question #21- The use of web-based course offerings has created a reduction in the teaching staff at our school.

Table 4.21

<table>
<thead>
<tr>
<th>0% Strongly Agree</th>
<th>5% Agree</th>
<th>10% NA</th>
<th>35% Disagree</th>
<th>50% Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 Respondents</td>
<td></td>
</tr>
</tbody>
</table>

Question #22- Web-based curriculum classes are offered in our school as a means to increase course offerings.

Table 4.22

<table>
<thead>
<tr>
<th>5% Strongly Agree</th>
<th>25% Agree</th>
<th>10% NA</th>
<th>47.5% Disagree</th>
<th>12.5% Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 Respondents</td>
<td></td>
</tr>
</tbody>
</table>
Question #23- Without web-based curriculum certain course offerings would not be available due to a lack of licensed personnel in the specified content area.

Table 4.23

<table>
<thead>
<tr>
<th>Agree Level</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Agree</td>
<td>7.5%</td>
</tr>
<tr>
<td>Agree</td>
<td>20%</td>
</tr>
<tr>
<td>NA</td>
<td>15%</td>
</tr>
<tr>
<td>Disagree</td>
<td>47.5%</td>
</tr>
<tr>
<td>Strongly Disagree</td>
<td>10%</td>
</tr>
</tbody>
</table>

40 Respondents

Question #24- Without web-based curriculum, certain course offerings would not be available, due to a lack of student requests necessary to create a full section.

Table 4.24

<table>
<thead>
<tr>
<th>Agree Level</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly Agree</td>
<td>5%</td>
</tr>
<tr>
<td>Agree</td>
<td>20%</td>
</tr>
<tr>
<td>NA</td>
<td>17.5%</td>
</tr>
<tr>
<td>Disagree</td>
<td>47.5%</td>
</tr>
<tr>
<td>Strongly Disagree</td>
<td>10%</td>
</tr>
</tbody>
</table>

40 Respondents
Table 4.25

Survey Instrument Answer Tallies

<table>
<thead>
<tr>
<th>Survey Question</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>NA</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freq.</td>
<td>%</td>
<td>Freq.</td>
<td>%</td>
<td>Freq.</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>40.0</td>
<td>21</td>
<td>52.5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>70.0</td>
<td>10</td>
<td>25.0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>35.0</td>
<td>21</td>
<td>52.5</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>10.0</td>
<td>17</td>
<td>42.5</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>27.5</td>
<td>23</td>
<td>57.5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>26</td>
<td>65.0</td>
<td>12</td>
<td>30.0</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>22.5</td>
<td>19</td>
<td>47.5</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>35.0</td>
<td>22</td>
<td>55.0</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>10.0</td>
<td>24</td>
<td>60.0</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>5.0</td>
<td>31</td>
<td>77.5</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>2.5</td>
<td>11</td>
<td>27.5</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>20.0</td>
<td>25</td>
<td>62.5</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>7.5</td>
<td>30</td>
<td>75.0</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>2.5</td>
<td>7</td>
<td>17.5</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>20.0</td>
<td>17</td>
<td>42.5</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>2.5</td>
<td>4</td>
<td>10.0</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0.0</td>
<td>1</td>
<td>2.5</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>2.5</td>
<td>4</td>
<td>10.0</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>22.5</td>
<td>10</td>
<td>25.0</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>62.5</td>
<td>12</td>
<td>30.0</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0.0</td>
<td>2</td>
<td>5.0</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>5.0</td>
<td>10</td>
<td>25.0</td>
<td>4</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>7.5</td>
<td>8</td>
<td>20.0</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>5.0</td>
<td>8</td>
<td>20.0</td>
<td>7</td>
</tr>
</tbody>
</table>

The survey questions (the question numbers are in parentheses) were divided into three categories based on their relevance to answer the three research questions.

The results of the survey were used to answer three research questions:
1. Has utilizing web-based curriculum software assisted the at-risk student population in the recovery of lost credit and increased graduation rates? (questions 7 and 8)

2. Does the school administration and greater school community support the alternative approach that utilizes web-based credit recovery/acceleration options? (questions 2, 3, 4, 5, and 6)

3. Has the lack of technology skills or access to technology prevented students from accessing web-based curriculum software applications? (questions 6, 7, and 18)

Table 4.26
Research Question 1

<table>
<thead>
<tr>
<th>Descriptive Statistics</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>Mean</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>When compared to past achievement, students in the web-based curriculum program achieve at or above past achievement levels</td>
<td>40</td>
<td>1</td>
<td>4</td>
<td>2.10</td>
<td>.778</td>
</tr>
<tr>
<td>Web-based curriculum has contributed to positive gains in our schools graduation of the students</td>
<td>40</td>
<td>1</td>
<td>4</td>
<td>1.78</td>
<td>.698</td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reliability Statistics</th>
<th>Cronbach's Alpha</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.755</td>
<td>2</td>
</tr>
</tbody>
</table>
The primary objective of web-based curriculum is to provide an online credit recovery option to students in an effort to keep them on track for graduation. In this study respondents were asked to identify if they observed an improvement in academic achievement related to students requiring credit recovery. Additionally, respondents were asked to identify whether they had witnessed an improvement in the school’s graduation rate. The survey results revealed a strong belief among school personnel the use of web-based curriculum had a positive academic effect on the school. The alpha coefficient was determined for survey questions; q7 and q8 in an effort to determine the internal consistency for research question number one. The alpha coefficient for the five items was .755, (Table 4.26) suggesting that the items have a relatively high internal consistency. It should be noted that a reliability coefficient of .70 or higher is considered "acceptable" in most social science research situations.
Table 4.27

Research Question 2

<table>
<thead>
<tr>
<th>Description</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>Mean</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The administrators support the use of web-based curriculum as a means of credit recovery in our school</td>
<td>40</td>
<td>2</td>
<td>5</td>
<td>4.63</td>
<td>.667</td>
</tr>
<tr>
<td>The school supports the use of web-based curriculum – in terms of teachers involved, facilities and finances</td>
<td>40</td>
<td>2</td>
<td>5</td>
<td>4.15</td>
<td>.834</td>
</tr>
<tr>
<td>The teachers support the use of web-based curriculum as a means of credit recovery in our school</td>
<td>40</td>
<td>1</td>
<td>5</td>
<td>3.15</td>
<td>1.189</td>
</tr>
<tr>
<td>The community supports the use of web-based curriculum as a means of credit recovery in our school</td>
<td>40</td>
<td>3</td>
<td>5</td>
<td>4.13</td>
<td>.648</td>
</tr>
<tr>
<td>Students support the use of web-based curriculum, in terms of usage</td>
<td>40</td>
<td>3</td>
<td>5</td>
<td>4.60</td>
<td>.591</td>
</tr>
</tbody>
</table>

Reliability

<table>
<thead>
<tr>
<th>Reliability Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cronbach's Alpha</td>
</tr>
<tr>
<td>.752</td>
</tr>
</tbody>
</table>

When implementing any type of new educational programming, the level of support from all school stakeholders must be considered. In this study, respondents were asked to gauge the amount of support for the
utilization of web-based curriculum as a means of credit recovery for five specific key stakeholder groups. The groups identified were administrators, the school (the school board, in terms of providing the necessary resources), teachers, community, and students. The survey results identified strong support for the program by all groups with the exception of teachers. The alpha coefficient was determined for survey questions; q2, q3, q4, q5, q6 in an effort to determine the internal consistency for research question number two. The alpha coefficient for the five items is .752, (Table 4.27) suggesting the items had a relatively high internal consistency.

Table 4.28

Research Question 3

<table>
<thead>
<tr>
<th>Descriptive Statistics</th>
<th>N</th>
<th>Min.</th>
<th>Max.</th>
<th>Mean</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students support the use of web-based curriculum – in terms of usage, appreciation etc</td>
<td>40</td>
<td>3</td>
<td>5</td>
<td>4.60</td>
<td>.591</td>
</tr>
<tr>
<td>The lack of technology skills eliminates some students from accessing web-based curriculum as a credit recovery tool</td>
<td>40</td>
<td>2</td>
<td>5</td>
<td>4.25</td>
<td>.707</td>
</tr>
<tr>
<td>Not all students have access to the technology necessary to utilize web-based curriculum</td>
<td>40</td>
<td>1</td>
<td>5</td>
<td>3.78</td>
<td>.862</td>
</tr>
</tbody>
</table>

Reliability Statistics

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.757</td>
<td>3</td>
</tr>
</tbody>
</table>
The third research question addressed the issue of whether students have adequate technological skills for web-based curriculum and whether the school has adequate access to the tools necessary to successfully complete a web-based online credit recovery program. The results strongly demonstrate that today’s students are “digital natives” and technology is not a barrier to using web-based curriculum as a credit recovery tool. The results also indicated that schools are providing students adequate access to the technology needed to use web-based curriculum. The alpha coefficient was determined for survey questions; q6, q17 and q18 in an effort to determine the internal consistency for research question number three. The alpha coefficient for the five items is .757 (Table 4.28), again suggesting that the items have a relatively high internal consistency.

Analysis of Graduation and Dropout Rate Data

Graduation rate data and dropout rate data were collected for the 20 East Central Indiana schools in the study. Data were collected from the Indiana Department of Education website at http://www.doe.in.gov/data/reports.html and revealed trends on both the graduation rate and dropout rate that covered a three year period, from 2008 thru 2010. Evaluation of the data further revealed that 16 out of the 20 school corporations surveyed realized an improvement in their graduation rate over a three year period while they were utilizing web-based curriculum. Eighteen out of the 20 school corporations experienced a reduction in their
reported dropout rate. Tables 4.29 and 4.31 show that School 1 and School 20 were schools who did not see improvements in either category. In the two schools it was discovered that when the graduation rate declined, the dropout rate increased. This simple correlation does not imply causation. However, it does not mean that correlations cannot indicate the potential existence of a causal relationship. It should be noted that many of the surveyed school corporations are using multiple approaches to improve the achievement level of students. Additionally, there are varying degrees of implementation among the schools in terms of the utilization of web-based curriculum software programming as a means of academic credit recovery.
Using Web-Based Curriculum to Assist “At-Risk” Students

Table 4.29

Graduation Rate

<table>
<thead>
<tr>
<th>School/Year</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>School 1</td>
<td>88.90</td>
<td>88.60</td>
<td>83.70</td>
</tr>
<tr>
<td>School 2</td>
<td>75.50</td>
<td>86.30</td>
<td>87.80</td>
</tr>
<tr>
<td>School 3</td>
<td>82.30</td>
<td>87.00</td>
<td>90.20</td>
</tr>
<tr>
<td>School 4</td>
<td>86.00</td>
<td>88.10</td>
<td>96.40</td>
</tr>
<tr>
<td>School 5</td>
<td>90.90</td>
<td>96.60</td>
<td>97.50</td>
</tr>
<tr>
<td>School 6</td>
<td>85.70</td>
<td>90.80</td>
<td>93.20</td>
</tr>
<tr>
<td>School 7</td>
<td>84.80</td>
<td>89.80</td>
<td>95.70</td>
</tr>
<tr>
<td>School 8</td>
<td>88.10</td>
<td>93.00</td>
<td>95.30</td>
</tr>
<tr>
<td>School 9</td>
<td>76.30</td>
<td>82.40</td>
<td>83.90</td>
</tr>
<tr>
<td>School 10</td>
<td>84.20</td>
<td>87.90</td>
<td>83.60</td>
</tr>
<tr>
<td>School 11</td>
<td>92.30</td>
<td>88.30</td>
<td>91.80</td>
</tr>
<tr>
<td>School 12</td>
<td>87.60</td>
<td>87.70</td>
<td>95.50</td>
</tr>
<tr>
<td>School 13</td>
<td>66.20</td>
<td>72.80</td>
<td>68.20</td>
</tr>
<tr>
<td>School 14</td>
<td>75.40</td>
<td>86.10</td>
<td>87.00</td>
</tr>
<tr>
<td>School 15</td>
<td>74.70</td>
<td>88.00</td>
<td>84.10</td>
</tr>
<tr>
<td>School 16</td>
<td>84.20</td>
<td>88.60</td>
<td>89.10</td>
</tr>
<tr>
<td>School 17</td>
<td>78.20</td>
<td>85.40</td>
<td>92.50</td>
</tr>
<tr>
<td>School 18</td>
<td>90.30</td>
<td>91.10</td>
<td>78.40</td>
</tr>
<tr>
<td>School 19</td>
<td>47.50</td>
<td>57.00</td>
<td>57.00</td>
</tr>
<tr>
<td>School 20</td>
<td></td>
<td></td>
<td>76.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>81.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82.55</td>
</tr>
</tbody>
</table>

Chart 1

Graduation Rate
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

Table 4.30

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009 Pearson Correlation</td>
<td>1</td>
<td>.925**</td>
<td>.806**</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2010 Pearson Correlation</td>
<td>.925**</td>
<td>1</td>
<td>.865**</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2011 Pearson Correlation</td>
<td>.806**</td>
<td>.865**</td>
<td>1</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).

Table 4.31

<table>
<thead>
<tr>
<th>School/Year</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>School 1</td>
<td>4.2</td>
<td>6.3</td>
<td>12</td>
</tr>
<tr>
<td>School 2</td>
<td>8.2</td>
<td>3.9</td>
<td>6.1</td>
</tr>
<tr>
<td>School 3</td>
<td>11.5</td>
<td>8.3</td>
<td>4.9</td>
</tr>
<tr>
<td>School 4</td>
<td>2.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>School 5</td>
<td>2.7</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>School 6</td>
<td>5.8</td>
<td>3.6</td>
<td>3.9</td>
</tr>
<tr>
<td>School 7</td>
<td>4.5</td>
<td>3.4</td>
<td>2.1</td>
</tr>
<tr>
<td>School 8</td>
<td>8.5</td>
<td>2.7</td>
<td>1.3</td>
</tr>
<tr>
<td>School 9</td>
<td>14.1</td>
<td>11</td>
<td>7.3</td>
</tr>
<tr>
<td>School 10</td>
<td>11.2</td>
<td>11</td>
<td>8.6</td>
</tr>
<tr>
<td>School 11</td>
<td>5.9</td>
<td>6.4</td>
<td>3.8</td>
</tr>
<tr>
<td>School 12</td>
<td>5.9</td>
<td>6.4</td>
<td>3.8</td>
</tr>
<tr>
<td>School 13</td>
<td>21.1</td>
<td>16</td>
<td>20.7</td>
</tr>
<tr>
<td>School 14</td>
<td>14.8</td>
<td>5.7</td>
<td>5.4</td>
</tr>
<tr>
<td>School 15</td>
<td>5.9</td>
<td>3.8</td>
<td>2.2</td>
</tr>
<tr>
<td>School 16</td>
<td>4.1</td>
<td>2.6</td>
<td>1.9</td>
</tr>
<tr>
<td>School 18</td>
<td>11.3</td>
<td>8.5</td>
<td>6.7</td>
</tr>
<tr>
<td>School 19</td>
<td>5.6</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>School 20</td>
<td>32.2</td>
<td>19.4</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td>8.99</td>
<td>6.21</td>
<td>5.81</td>
</tr>
</tbody>
</table>

74
Chart 2

Dropout Rate

Table 32

<table>
<thead>
<tr>
<th></th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>Pearson Correlation</td>
<td>1</td>
<td>.909**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td></td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2009</td>
<td>Pearson Correlation</td>
<td>.909**</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2010</td>
<td>Pearson Correlation</td>
<td>.726**</td>
<td>.839**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).
Chart 3

Algebra 1 End of Course Assessment (2010)

<table>
<thead>
<tr>
<th>Algebra I-2010</th>
<th>9th</th>
<th>10th</th>
<th>11th</th>
<th>12th</th>
<th>Total Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corp</td>
<td>% Pass</td>
<td>% Pass</td>
<td>% Pass</td>
<td>% Pass</td>
<td>% Pass</td>
</tr>
<tr>
<td>0515</td>
<td>69.2%</td>
<td>35.7%</td>
<td>*</td>
<td>*</td>
<td>58.91%</td>
</tr>
<tr>
<td>1875</td>
<td>86.9%</td>
<td>26.5%</td>
<td>*</td>
<td>*</td>
<td>79.2%</td>
</tr>
<tr>
<td>1885</td>
<td>78.6%</td>
<td>33.3%</td>
<td>*</td>
<td>*</td>
<td>77.9%</td>
</tr>
<tr>
<td>1895</td>
<td>84.2%</td>
<td>28.6%</td>
<td>*</td>
<td>*</td>
<td>74.3%</td>
</tr>
<tr>
<td>1910</td>
<td>83.3%</td>
<td>82.4%</td>
<td>*</td>
<td>*</td>
<td>86.4%</td>
</tr>
<tr>
<td>1970</td>
<td>51.6%</td>
<td>12.9%</td>
<td>*</td>
<td>*</td>
<td>40.5%</td>
</tr>
<tr>
<td>1970</td>
<td>52.5%</td>
<td>17.5%</td>
<td>*</td>
<td>*</td>
<td>43.1%</td>
</tr>
<tr>
<td>1970</td>
<td>50.0%</td>
<td>16.9%</td>
<td>*</td>
<td>*</td>
<td>44.9%</td>
</tr>
<tr>
<td>2855</td>
<td>67.5%</td>
<td>44.4%</td>
<td>*</td>
<td>*</td>
<td>73.8%</td>
</tr>
<tr>
<td>2865</td>
<td>21.4%</td>
<td>14.6%</td>
<td>*</td>
<td>*</td>
<td>34.4%</td>
</tr>
<tr>
<td>3125</td>
<td>39.5%</td>
<td>17.9%</td>
<td>*</td>
<td>*</td>
<td>58.0%</td>
</tr>
<tr>
<td>3445</td>
<td>51.0%</td>
<td>12.8%</td>
<td>*</td>
<td></td>
<td>54.7%</td>
</tr>
<tr>
<td>3500</td>
<td>32.5%</td>
<td>11.1%</td>
<td>16.7%</td>
<td>*</td>
<td>38.6%</td>
</tr>
<tr>
<td>3625</td>
<td>80.2%</td>
<td>17.8%</td>
<td>15.4%</td>
<td>*</td>
<td>62.4%</td>
</tr>
<tr>
<td>3945</td>
<td>42.0%</td>
<td>11.1%</td>
<td>*</td>
<td>*</td>
<td>49.0%</td>
</tr>
<tr>
<td>5275</td>
<td>32.8%</td>
<td>14.8%</td>
<td>14.3%</td>
<td>0.0%</td>
<td>35.7%</td>
</tr>
<tr>
<td>5280</td>
<td>58.7%</td>
<td>37.9%</td>
<td>*</td>
<td>*</td>
<td>59.2%</td>
</tr>
<tr>
<td>6820</td>
<td>18.2%</td>
<td>40.0%</td>
<td>*</td>
<td>*</td>
<td>37.5%</td>
</tr>
<tr>
<td>6825</td>
<td>46.8%</td>
<td>15.4%</td>
<td>*</td>
<td>*</td>
<td>53.4%</td>
</tr>
<tr>
<td>6835</td>
<td>39.0%</td>
<td>10.0%</td>
<td>*</td>
<td>*</td>
<td>45.9%</td>
</tr>
</tbody>
</table>

Average Pass Rate 56.1%

State Average Pass Rate 63.3%
Chart 4

Algebra 1 End of Course Assessment (2011)

<table>
<thead>
<tr>
<th>Algebra I-2011</th>
<th>9th</th>
<th>10th</th>
<th>11th</th>
<th>12th</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corp</td>
<td>% Pass</td>
<td>% Pass</td>
<td>% Pass</td>
<td>% Pass</td>
<td>% Pass</td>
</tr>
<tr>
<td>0515</td>
<td>47.7%</td>
<td>***</td>
<td>***</td>
<td>51.4%</td>
<td>49.4%</td>
</tr>
<tr>
<td>1875</td>
<td>95.7%</td>
<td>44.4%</td>
<td>***</td>
<td>***</td>
<td>79.7%</td>
</tr>
<tr>
<td>1885</td>
<td>72.4%</td>
<td>30.8%</td>
<td>***</td>
<td>***</td>
<td>72.7%</td>
</tr>
<tr>
<td>1895</td>
<td>94.7%</td>
<td>33.3%</td>
<td>***</td>
<td>***</td>
<td>84.4%</td>
</tr>
<tr>
<td>1910</td>
<td>99.2%</td>
<td>61.5%</td>
<td>***</td>
<td>***</td>
<td>96.0%</td>
</tr>
<tr>
<td>3125</td>
<td>75.2%</td>
<td>25.6%</td>
<td>28.6%</td>
<td>***</td>
<td>76.7%</td>
</tr>
<tr>
<td>3445</td>
<td>82.0%</td>
<td>25.0%</td>
<td>46.2%</td>
<td>***</td>
<td>68.6%</td>
</tr>
<tr>
<td>1970</td>
<td>57.0%</td>
<td>26.3%</td>
<td>31.6%</td>
<td>***</td>
<td>44.6%</td>
</tr>
<tr>
<td>1970</td>
<td>87.1%</td>
<td>61.4%</td>
<td>***</td>
<td>***</td>
<td>77.4%</td>
</tr>
<tr>
<td>1970</td>
<td>72.8%</td>
<td>45.0%</td>
<td>34.6%</td>
<td>***</td>
<td>67.3%</td>
</tr>
<tr>
<td>2855</td>
<td>88.0%</td>
<td>41.7%</td>
<td>***</td>
<td>***</td>
<td>86.6%</td>
</tr>
<tr>
<td>2865</td>
<td>51.7%</td>
<td>29.6%</td>
<td>18.2%</td>
<td>***</td>
<td>57.1%</td>
</tr>
<tr>
<td>3500</td>
<td>33.6%</td>
<td>26.7%</td>
<td>39.1%</td>
<td>***</td>
<td>43.0%</td>
</tr>
<tr>
<td>3625</td>
<td>75.9%</td>
<td>49.4%</td>
<td>50.0%</td>
<td>41.7%</td>
<td>70.9%</td>
</tr>
<tr>
<td>3945</td>
<td>62.2%</td>
<td>25.9%</td>
<td>60.0%</td>
<td>***</td>
<td>59.8%</td>
</tr>
<tr>
<td>5275</td>
<td>48.2%</td>
<td>18.0%</td>
<td>6.7%</td>
<td>***</td>
<td>44.3%</td>
</tr>
<tr>
<td>5280</td>
<td>62.5%</td>
<td>50.0%</td>
<td>***</td>
<td>***</td>
<td>69.2%</td>
</tr>
<tr>
<td>6820</td>
<td>57.8%</td>
<td>36.4%</td>
<td>***</td>
<td>***</td>
<td>68.8%</td>
</tr>
<tr>
<td>6825</td>
<td>73.0%</td>
<td>31.3%</td>
<td>***</td>
<td>***</td>
<td>69.9%</td>
</tr>
<tr>
<td>6835</td>
<td>17.5%</td>
<td>28.6%</td>
<td>***</td>
<td>***</td>
<td>38.3%</td>
</tr>
</tbody>
</table>

Average Pass Rate 66.2%
State Average Pass Rate 72.4%
Chart 5

[Graph showing data for different schools over the years 2010 and 2011, comparing their performance to the state average.]
Chart 6

English 10 End of Course Assessment (2010)

<table>
<thead>
<tr>
<th>English 10-2010</th>
<th>Grade 9</th>
<th>Grade 10</th>
<th>Grade 11</th>
<th>Grade 12</th>
<th>Total Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corp</td>
<td>% Pass</td>
<td>% Pass</td>
<td>% Pass</td>
<td>% Pass</td>
<td>% Pass</td>
</tr>
<tr>
<td>0515</td>
<td>6.7%</td>
<td>61.2%</td>
<td>***</td>
<td>***</td>
<td>55.5%</td>
</tr>
<tr>
<td>1875</td>
<td>***</td>
<td>70.1%</td>
<td>***</td>
<td>***</td>
<td>69.7%</td>
</tr>
<tr>
<td>1885</td>
<td>***</td>
<td>72.4%</td>
<td>***</td>
<td>***</td>
<td>70.5%</td>
</tr>
<tr>
<td>1895</td>
<td>***</td>
<td>56.4%</td>
<td>***</td>
<td>***</td>
<td>54.8%</td>
</tr>
<tr>
<td>1910</td>
<td>***</td>
<td>73.5%</td>
<td>26.7%</td>
<td>***</td>
<td>69.4%</td>
</tr>
<tr>
<td>1970</td>
<td>***</td>
<td>58.6%</td>
<td>***</td>
<td>***</td>
<td>58.6%</td>
</tr>
<tr>
<td>1970</td>
<td>***</td>
<td>52.5%</td>
<td>52.5%</td>
<td>***</td>
<td>52.2%</td>
</tr>
<tr>
<td>1970</td>
<td>***</td>
<td>54.2%</td>
<td>***</td>
<td>***</td>
<td>54.0%</td>
</tr>
<tr>
<td>2855</td>
<td>***</td>
<td>53.7%</td>
<td>***</td>
<td>***</td>
<td>53.7%</td>
</tr>
<tr>
<td>2865</td>
<td>***</td>
<td>52.1%</td>
<td>37.5%</td>
<td>***</td>
<td>50.8%</td>
</tr>
<tr>
<td>3125</td>
<td>***</td>
<td>67.6%</td>
<td>***</td>
<td>***</td>
<td>67.6%</td>
</tr>
<tr>
<td>3445</td>
<td>13.6%</td>
<td>64.6%</td>
<td>***</td>
<td>***</td>
<td>60.6%</td>
</tr>
<tr>
<td>3500</td>
<td>***</td>
<td>47.2%</td>
<td>35.7%</td>
<td>***</td>
<td>46.6%</td>
</tr>
<tr>
<td>3625</td>
<td>***</td>
<td>63.6%</td>
<td>40.7%</td>
<td>***</td>
<td>62.0%</td>
</tr>
<tr>
<td>3945</td>
<td>***</td>
<td>54.4%</td>
<td>***</td>
<td>***</td>
<td>54.2%</td>
</tr>
<tr>
<td>5275</td>
<td>***</td>
<td>52.0%</td>
<td>30.0%</td>
<td>0.0%</td>
<td>50.0%</td>
</tr>
<tr>
<td>5280</td>
<td>26.7%</td>
<td>74.2%</td>
<td>***</td>
<td>***</td>
<td>66.1%</td>
</tr>
<tr>
<td>6820</td>
<td>***</td>
<td>66.7%</td>
<td>***</td>
<td>***</td>
<td>66.7%</td>
</tr>
<tr>
<td>6825</td>
<td>***</td>
<td>59.8%</td>
<td>***</td>
<td>***</td>
<td>59.3%</td>
</tr>
<tr>
<td>6835</td>
<td>***</td>
<td>64.7%</td>
<td>***</td>
<td>***</td>
<td>64.7%</td>
</tr>
</tbody>
</table>

Average Pass Rate

59.3%

State Average Pass Rate

64.9%
Chart 7

English 10 End of Course Assessment (2011)

<table>
<thead>
<tr>
<th>English 10-2011</th>
<th>Grade 9 % Pass</th>
<th>Grade 10 % Pass</th>
<th>Grade 11 % Pass</th>
<th>Grade 12 % Pass</th>
<th>Total Pass %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corp</td>
<td>***</td>
<td>70.0%</td>
<td>***</td>
<td>***</td>
<td>64.6%</td>
</tr>
<tr>
<td>0515</td>
<td>***</td>
<td>75.0%</td>
<td>47.4%</td>
<td>***</td>
<td>70.5%</td>
</tr>
<tr>
<td>1875</td>
<td>***</td>
<td>68.3%</td>
<td>***</td>
<td>***</td>
<td>69.8%</td>
</tr>
<tr>
<td>1885</td>
<td>***</td>
<td>72.3%</td>
<td>***</td>
<td>***</td>
<td>73.3%</td>
</tr>
<tr>
<td>1895</td>
<td>100.0%</td>
<td>81.3%</td>
<td>***</td>
<td>***</td>
<td>84.1%</td>
</tr>
<tr>
<td>1910</td>
<td>***</td>
<td>71.4%</td>
<td>***</td>
<td>***</td>
<td>70.8%</td>
</tr>
<tr>
<td>1970</td>
<td>***</td>
<td>63.5%</td>
<td>***</td>
<td>***</td>
<td>62.5%</td>
</tr>
<tr>
<td>1970</td>
<td>***</td>
<td>66.6%</td>
<td>50.0%</td>
<td>***</td>
<td>66.0%</td>
</tr>
<tr>
<td>2855</td>
<td>***</td>
<td>71.0%</td>
<td>60.0%</td>
<td>***</td>
<td>70.4%</td>
</tr>
<tr>
<td>2865</td>
<td>***</td>
<td>55.9%</td>
<td>52.9%</td>
<td>10.7%</td>
<td>52.6%</td>
</tr>
<tr>
<td>3125</td>
<td>***</td>
<td>80.0%</td>
<td>63.3%</td>
<td>***</td>
<td>78.4%</td>
</tr>
<tr>
<td>3445</td>
<td>***</td>
<td>68.4%</td>
<td>27.3%</td>
<td>***</td>
<td>66.8%</td>
</tr>
<tr>
<td>3500</td>
<td>***</td>
<td>61.6%</td>
<td>41.0%</td>
<td>***</td>
<td>59.8%</td>
</tr>
<tr>
<td>3625</td>
<td>***</td>
<td>63.0%</td>
<td>75.0%</td>
<td>***</td>
<td>62.5%</td>
</tr>
<tr>
<td>3945</td>
<td>***</td>
<td>74.7%</td>
<td>68.2%</td>
<td>***</td>
<td>74.1%</td>
</tr>
<tr>
<td>5275</td>
<td>***</td>
<td>64.5%</td>
<td>55.6%</td>
<td>***</td>
<td>63.3%</td>
</tr>
<tr>
<td>5280</td>
<td>50.0%</td>
<td>73.2%</td>
<td>***</td>
<td>***</td>
<td>68.5%</td>
</tr>
<tr>
<td>6820</td>
<td>***</td>
<td>75.3%</td>
<td>***</td>
<td>***</td>
<td>76.3%</td>
</tr>
<tr>
<td>6825</td>
<td>***</td>
<td>70.2%</td>
<td>46.2%</td>
<td>***</td>
<td>66.7%</td>
</tr>
<tr>
<td>6835</td>
<td>***</td>
<td>79.2%</td>
<td>***</td>
<td>***</td>
<td>74.4%</td>
</tr>
</tbody>
</table>

Average Pass Rate 76.4%

State Average Pass Rate 72.4%
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

Chart 8

Chart 9
Analysis of Various Achievement Data

In addition to looking at the graduation and dropout rates for the 20 schools, achievement data were collected from the Indiana Department of Education website at http://www.doe.in.gov/data/reports.html. End of Course Assessment (ECA) data were available for 2010 and 2011. Student achievement in Math (Algebra I ECA) and English (English 10 ECA) was evaluated over this two year period.

Charts 3 and 4 below display a two year comparison of student achievement data for the 20 schools identified for the study. Chart 3 illustrates the percentage of students successful in passing the Algebra I ECA in 2010 and Chart 4 illustrates the percentage of students successful in passing the Algebra I ECA. Captured at the bottom of each chart is the average passing percentage for the survey population. The survey population pass rate improved from 56.1% in 2010 to 66.2% in 2011. The state average pass rate increased from 63.3% in 2010 to 72.4% in 2011. Chart 5 illustrates the comparison of growth for achievement on the Algebra I ECA. It also shows the survey population in comparison to the average passing percentage of all 944 public, private, and charter schools registered with the IDOE.

Chart 6 illustrates an average pass rate of 59.3% on the English 10 ECA for the survey population in 2010. In 2011 (Chart 7) that percentage grew to 76.4%. In comparison to all 944 public, private, and charter schools
registered with the IDOE who demonstrated a growth from 64.9% to 71.9%,
the survey population demonstrated a larger measure of growth.

In conclusion, the survey population is realizing academic achievement
gains as measured by the increase in standardized test scores on the End of
Course Assessments, increased graduation rates, and a decrease in dropout
rates.
CHAPTER V

SUMMARY, DISCUSSION, AND RECOMMENDATIONS
CHAPTER V

Context of the Study

The purpose of this study was to identify how effective web-based credit recovery programs have been at assisting students in select East Central Indiana Schools maintain their path to graduation and stay in school. Two separate observations by the researcher served as the contextual foundation for the topic of choice. The two specific observations describe students who may be found at the opposite ends of the spectrum in terms of academic ability, however both benefited from the use of web-based online credit recovery programming. In the first scenario, the researcher observed a freshman student who refused to attend school. This young man could be described as a somewhat socially awkward individual and simply did not feel comfortable around his peers. After the first semester of his freshman year this young man had not secured his first high school credit and was quickly placing himself into jeopardy. By midway through his second semester not much had changed with his attendance and participation in school. It was at this point that this young man was offered the opportunity to participate in a web-based online credit recovery program. Within less than a semester of
working on this program the young man in question had earned more than
enough credits to be considered a sophomore and get back on track to
graduation. In the second scenario, the researcher was introduced to a
student who did not possess the academic potential as seen in the student of
the first case study. This particular student spent a majority of his school
years identified with specific learning disabilities and was supported with
accommodations in the traditional classroom. At the end of his junior year of
high school he experienced trouble outside of the school setting. For a variety
of reasons this young man was on the verge of making the decision to drop
out of school. Identified as a potential candidate for online credit recovery
programming, a case conference was convened to decide if this change of
placement was acceptable. The case conference committee decided to approve
the change of placement and reconvene after a short trial period to evaluate if
the change appeared to be successful in keeping the student progressing
towards graduation. With the assistance of this student’s teacher of record,
the student continued to work on the required courses necessary to graduate.
The follow-up meeting revealed the student was continuing to complete the
required coursework necessary for graduation and indeed graduated from
high school in the spring of 2011.

Summary of the Study

As stated in Chapter One, public education has long been called upon
to cultivate this country’s richest and deepest asset, the American student.
“As the financial meltdown and economic slump hold the national spotlight, a potential crisis is on the horizon: a persistently high dropout rate that educators and mayors across the country say increases the threat to the country’s strength and prosperity” (Fields, 2008, p.1). There is a strong belief that the education problem is the mediocre performance of American Public Schools. Moe and Chubb (2009), leading educational economists argue “By any reasonable standard, the schools are not meeting the needs of 21st century children” (p. 149). As students continue to become disconnected with education, the chances they will reach graduation diminish.

The purpose of this study was to identify if schools were leveraging the advancements of technology, as a means to link the common interests of today’s generation with tools to supplement, or in some cases replace, traditional instruction as an avenue to re-engage students and assist them in staying on course for graduation and recovering lost credit. Furthermore, the study sought to discover the level of support schools were receiving from key stakeholders for this online credit recovery programming, and if a lack of the necessary access and skill were available for all students.

Respondents to the study consisted of a variety of school administrators, guidance counselors, alternative school supervisors, and teachers who have direct involvement with web-based curriculum credit recovery programming in their schools. The participants were invited, via email (Appendix C), to complete the survey (Appendix A). The survey consisted of 24 questions that
utilized a five-point Likert-Scale. Each question allowed the respondent to elaborate with open ended responses. Question 25 provided an opportunity for the respondent to provide any additional information that was not contained in the first 24 questions in a hope of allowing the researcher the ability to gain a deeper understanding of how effective these programs have been. It also provided the respondent an opportunity to articulate some of the challenges school corporations are facing in the implementation of web-based curriculum programs that was not captured in the survey questionnaire.

Discussion of Methodology

This quantitative study explored the level at which web-based online credit recovery programs are being supported and used in select schools in East Central Indiana. The survey instrument was piloted with five superintendents, whose corporations utilize web-based credit recovery programming. The superintendents were interviewed to gather knowledge on specific implementation policies and procedures. Additionally, these individuals served as pre-test subjects for the online questionnaire, providing expert feedback to the researcher. Likert-scale questions were asked via an on-line survey system,

The survey questions were divided into three categories based on their relevance to answer the three research questions. The results of the survey were used to answer the three research questions guiding the study:
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

1. Has utilizing web-based curriculum software assisted the at-risk student population in the recovery of lost credit and increased graduation rates?

2. Does the school administration and greater school community support the alternative approach that utilizes web-based credit recovery/acceleration options?

3. Has the lack of technology skills or access to technology prevented students from accessing web-based curriculum software applications?

Discussion of the Major Findings

Research Question 1

The results of the study demonstrate, overwhelmingly, that school officials who are directly involved with the use of web-based curriculum, have found the programs are successful in assisting at-risk students recover credits, accelerate credits, achieve their academic goals, and graduate from high school. The fact is schools which are focused on increasing the number of at-risk students who recover lost or never gained credit, will realize an increase in their graduation rates.

Schargel and Smink (2004) advocate, helping at-risk students is achieved by thinking outside the box and by using different and creative approaches to present instruction. As Ravitch points out, “education can be a rigorous task” (p. 225). Change is a rigorous task, but reducing dropout rates and increasing graduation is well worth the hard work and creativity needed to get the job done.
Other school districts around the country are having success with online credit recovery programming, including schools in Detroit, New York City, and Bowling Green, Kentucky (Schultz, 2010, Heilemann, 2010, Ed Options, 2011).

Clearly, society benefits when students do not become dropouts, but graduate from high school. A variety of studies have shown that dropouts are more likely to be unemployed, receive public assistance (including welfare), be single parents, commit crimes, and go to jail (Dosomething.org, 2011). The cost of providing an online credit recovery program is far outweighed by the social and economic problems caused by dropouts (Fields, 2008, Alliance, 2010).

Research Question 2

The second research question addressed the issue of the importance, if any, of community involvement and support of web-based curriculum as a means of credit recovery in the school. The results clearly indicated that school administrators, students, and the school board and community (in that order) support the use of web-based curriculum as a means of credit recovery in their school. However, teachers are certainly not embracing the program. In fact, 42% of the respondents did not believe that teachers support an online credit recovery program. It would be very difficult to fully implement an effective online credit recovery program without the “buy-in” of teachers. Ravitch (2010) emphasizes the pivotal role that teachers play in effectuating
change. Ravitch (2010) recognizes the key to transforming schools is in the hands of teachers.

The results of this study should serve to ease the fears and reluctance of teachers to accept web-based curriculum. First, the results indicate that teachers are not being replaced by technology. In fact, the results strongly underscore the central role teacher’s play in assisting at-risk students to succeed. Respondents stressed the importance of an interactive learning environment and a sense of community to effect student performance. Obviously, such an environment cannot be created by technology alone; teacher leaders are needed.

Second, respondents almost unanimously reported that no teachers had been eliminated (reduction in force) due to the implementation of web-based curriculum.

Third, the findings support what Downey, a leading researcher and supporter of teachers and technology has said about credit recovery programs. Without the involvement of teachers, our students in credit recovery programs “would fail again” (Dessoff, 2009). Downey sees the teacher in the lab explaining concepts and motivating students.

Fourth, the findings demonstrate that at-risk students like web-based curriculum, are extremely motivated by it, and actually behave better in a web-based classroom or environment. That should be music to teachers’ ears.
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

Research Question 3

The results of the study showed that the current generation of high schools students are children of the digital age. A lack of technological skills to use web-based curriculum software applications is not a problem. This finding runs parallel to Thomas Friedman’s premise in his best-selling book, *The World is Flat* that the current generation of American elementary and secondary students can improve the nations standing in the economic world order through technological innovations.

Conclusions

Initial concerns expressed by school personnel regarding web-based curriculum programs centered on the perception that the programs lacked the appropriate level of academic rigor. However, this concern can be addressed through evaluation of the software, and using teachers as leaders in the web-based classroom.

For years educators have known that not all students flourish, academically, in the same manner. Whatever the reason may be, whether it is social capital deficits or cognitive learning styles, it is crystal clear that today’s generation responds to technology as a learning tool. The results of the study show that web-based curriculum does lead to reduced dropout rates and increased graduation rates.

The need to break away from the status quo has never been more apparent than it is today. This is evidenced by the continued increase of
student dropouts in our public school system as well as the low performance of American students on standardized tests in math and science, in comparison to students from other industrialized nations. The economic impact of at-risk students who do not complete high school, on their community, further validates the exploration of effective alternative avenues to increase academic performance. Online credit recovery is one of the most potent avenues school districts can explore.

Recommendations for Practice

The findings from this study suggest two possible recommendations to increase the acceptance and opportunities for the use of web-based curriculum programs. The first recommendation is that school corporations need to investigate avenues to expand access for students to utilize computer facilities or find ways to manage program passwords so that students can access these valuable programs at home. The second recommendation is to require the administration of school corporations, which use web-based curriculum for credit recovery, to emphasize the positive nature of the program, and promote it to the greater school community in an effort to increase school community support.

Future Research

The purpose of this quantitative study was to add to the body of knowledge on the effectiveness of web-based curriculum programming for assisting at-risk students with recovery of high school credit and providing
students with alternatives as they strive to achieve their academic goals with the ultimate goal being graduation from high school. The various key stakeholders that represent this student population; administrators, guidance counselors, teachers, parents, and the students themselves, may find the results of this study to be of value as this type of programming continues to expand and evolve in the future. Surveying students who have utilized web-based curriculum programs could prove valuable. The student voice is one that should be heard when evaluating the effectiveness this type of programming.

Recommendation One

For the most part, today’s students possess the capable technology at home to work on web-based curriculum software programs. However, if a school corporation is going to expand the utilization of these valuable programs, then it must be done by taking all groups and situations into consideration. This will require concise control measures to be in place, however, could exponentially increase the possibility for positive outcomes. If these controls measures are put into action and administered effectively, the key school stakeholders can take comfort in knowing the expansion of opportunities keeps the educational institution’s academic integrity intact. Comprehensive control measures would include, but not be limited to, the evaluation of curriculum content, use of passwords, testing requirements, application procedures, and the use of school facilities. As the
implementation of web-based curriculum programming is initiated, utilizing, and consistently refining a standard practice or operating procedure will be of benefit.

Recommendation Two

A fear of deviating from the status quo and local teacher association concerns that such programming may lead to a reduction in teaching staff must be addressed. School administrators must oversee these programs and highlight the financial and academic impact experienced by school corporations when at-risk students remain in school. It has often been said that “knowledge is power” and sharing the successes as well as learning experiences from web-based curriculum programs, as it pertains to this specific population of students, will assist in gaining support. Student achievement must be at the center of all decisions on programs such as web-based curriculum software. I would advocate the utilization of a committee to represent this academic option within a school corporation. The committee should reflect all of the possible groups that represent the various key community stakeholders.

Implications for Practice

The data from the study provide strong evidence that key elements to the successful implementation of a web-based online credit recovery program should be in place to ensure the greatest amount of efficacy possible. Items that should be considered included: Precise control measures that guided the
referral of students into online credit recovery courses, a demonstrated
ability to track and document the progress of students enrolled in online
credit recovery courses, expanded access to school computer labs, and
continuous promotion of the program capabilities to all key school community
stakeholders.

Future Research

The results of the study focus showed the success school corporations
in East Central Indiana are experiencing at assisting at-risk students to
obtain lost high school credit while progressing toward their academic goals.
An obvious place to expand upon this research would be to include all school
corporations in the state of Indiana which currently have web-based
curriculum programs. Further study is also need to identify successful
management principles for these programs; what is working, and how school
corporations can be creative in addressing challenges which will assist school
districts interested in initiating or refining web-based curriculum
programming.

Finally, a longitudinal study, designed to observe the number of
students completing online credit recovery programs in the 20 East Central
Indiana Schools would provide educators with valuable information on the
possible successful implementation of these programs. An important part of
this process would take into consideration the identification strategies for at-
risk students who have been successful in obtaining a high school diploma
and what post-secondary routes they choose. In the words of Dr. Bill
Milliken, founder of Communities in Schools, “once a community embraces
the idea of modifying how resources are delivered to schools and families,
there’s no limit to the creative possibilities.”
REFERENCES

USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

Hinshaw, Greg (Superintendent), Winchester Community School Corporation Personal Interview, January, 2011.

USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

Indiana Education Insight (2011). Taming Virtual Wild Frontier a Reality

Kline, Ken (Superintendent), Blackford County Schools, Personal Interview, January, 2011.

Long, Tim (Superintendent), Jay County School Corporation, Personal Interview, February, 2011.

USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

website: http://www.pearsonschool.com/index.cfm

Instruction on the Intrinsic Motivation of Secondary Students.
Retrieved January 10, 2011, Web site:
http://teach.valdosta.edu/are/litreviews/vol4no2/AshleyPhillips_LitRev.

Plato Learning Company, Inspired solutions for teaching and learning,

Rausch, Bryan (Superintendent), Liberty Perry School Corporation, Personal
Interview, January, 2011.

Rhee, M. (2010, December 10). What I’ve Learned, We Can’t Keep Politics
Out of School Reform School Reform, Why I’m Launching A National
Movement To Transform. Education. Newsweek. 36-41.

Teachers College Columbia University, October 2005.

Schargel and Smink (2001). Strategies to Help Solve Our School
Dropout Problem. Larchmont, New York: Eye on Education.
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

Schultz, Marissa (2010). At-risk students embrace online learning

http://www.texastribune.org/texas-education/high-school-dropouts/
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

APPENDIX A

ADMINISTRATOR INTERVIEW
Appendix A

<table>
<thead>
<tr>
<th>IDOE</th>
<th>School</th>
</tr>
</thead>
<tbody>
<tr>
<td>0515</td>
<td>Blackford County Schools</td>
</tr>
<tr>
<td></td>
<td>Superintendent: Mr. Ken Kline</td>
</tr>
<tr>
<td>1895</td>
<td>Liberty Perry School Corporation</td>
</tr>
<tr>
<td></td>
<td>Superintendent: Mr. Bryan Rausch</td>
</tr>
<tr>
<td></td>
<td>Alternative Program Coordinator: Amy Everhart</td>
</tr>
<tr>
<td>3945</td>
<td>Jay County School Corporation</td>
</tr>
<tr>
<td></td>
<td>Superintendent: Dr. Tim Long</td>
</tr>
<tr>
<td></td>
<td>Alternative Program Coordinator: Rob Weaver</td>
</tr>
<tr>
<td>6820</td>
<td>Monroe Central School Corporation</td>
</tr>
<tr>
<td></td>
<td>Interim Superintendent: Mr. Reece Mann</td>
</tr>
<tr>
<td></td>
<td>Alternative Program Coordinator: Mr. Jeremy Duncan</td>
</tr>
<tr>
<td>6845</td>
<td>Randolph Central School Corporation</td>
</tr>
<tr>
<td></td>
<td>Superintendent: Dr. Greg Hinshaw</td>
</tr>
</tbody>
</table>
ADMINISTRATOR INTERVIEW

Interview questions for administrators

1. How would you describe the current situation of at-risk students in your school?

2. What are the good points of these students?

3. What are the low points of these students?

4. How long have you been offering special programs for at-risk students?

5. Are you offering web-based curriculum for at-risk students?

6. Has the program expanded within the last five years and do you have plans to expand the program in the future?

7. If you are offering the web-based approach, when did you first implement the program?

8. To what extent does the school support the web-based curriculum – in terms of teachers involved, facilities and finances?

9. To what extent do the students support the web-based curriculum – in terms of usage, appreciation etc?

10. To what extent do the parents and the rest of the community support the web-based curriculum?
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

11. How have the students reacted to web-based curriculum programming?

12. How are the performances of the students who are exposed to web based curriculum?

13. Have there been changes (positive or negative) on the performances of the students using web-based curriculum?

14. If there is a basis for comparing the performance of these students who make use of web based curriculum from those who do not, how do you compare their performances?

15. Do you consider the web-based curriculum as contributing to the graduation of the students? In what way(s)?
APPENDIX B

EMAIL INVITATION TO SELECT ALTERNATIVE SCHOOL ADMINISTRATORS TO PARTICIPATE IN THE SURVEY
May 27, 2011

Dear Alternative School Administrator/Educator:

How effective is web-based curriculum software at assisting at-risk students recover or accelerate high school credits? I am asking for your help. It is my hope that you will share with me your experiences with such programs. As a doctoral student at Ball State University, I am investigating what the successes school corporations are experiencing by utilizing technology to help the states at-risk student population meet and even exceed their academic goals.

As a fellow educator, I believe your views on this important subject are extremely valuable. Please take the 5 to 10 minutes needed to complete an online survey exploring your experiences supervising these programs. As a small token of appreciation for your help, I will make copies of the results available to you upon request. The survey website will provide you with an informed consent that explains my research, your rights as a research participant, and the survey.

Please read the informed consent thoroughly before deciding to take the survey. If you have questions concerning this research, please feel free to contact me at shaner@monroecentral.org or (765)-348-0675 or my advisor, Dr. Joseph McKinney, jmckinney@bsu.edu or (765) 285-8488. Please accept my sincere thanks for your help with this important project. Click here to access the informed consent and survey website. Survey Link: https://www.surveymonkey.com/s/RobbinsDissertation

Sincerely,

William S. Robbins
Doctoral Candidate
Ball State University
APPENDIX C

EMAIL REMINDER TO ALTERNATIVE SCHOOL SUPERVISORS
June 10, 2011

Dear Alternative School Supervisor:

Your responses are important!! If you have not already done so, please click on the link below to access the survey measuring what you—know about the benefits of utilizing web-based curriculum to assist the at-risk student population obtain high school credits. This credit obtainment can be for recovery or acceleration purposes as students work to accomplish their academic goals. Your responses will help professional organizations, secondary education institutions, and central office administrators when prioritizing technology as a tool for academic programming.

The survey should take between 5 and 10 minutes to complete, and your responses are completely anonymous. I ask that you please complete the survey prior to (two weeks from the date of this email). Click here to access the informed consent and survey website; Survey Link: https://www.surveymonkey.com/s/RobbinsDissertation. Thanks for your help with this important project.

William S. Robbins
Doctoral Candidate
shaner@monroecentral.org

Dr. Joseph McKinney
Committee Chair
(765) 285-8488
jmckinney@bsu.edu
Ball State University
APPENDIX D

IDENTIFIED SCHOOLS AND PROGRAMS

FOR QUESTIONNAIRE SURVEY
IDENTIFIED CORPORATIONS SURVEYED

Anderson High School
Blackford High School
Delta High School
Elwood Community School Corporation
Greenfield Central High School
New Castle High School
Huntington North High School
Jay County High School
Kokomo High School
Marion Community Schools
Mississinewa Community Corporation
Monroe Central School Corporation
Mt. Pleasant Community School Corporation
Muncie Community Schools
Muncie Central High School
Muncie Southside High School
Union City High School
Wapahani High School
Wes-Del Jr./Sr. High School
Winchester High School
APPENDIX E

INFORMED CONSENT FORM
Informed Consent Form

“Using Web-Based Curriculum Programs to Assist At-Risk Students with High School Credit Recovery in Selected East Central Indiana Schools”

Purpose of the Study:

The purpose of this study was to analyze the success at which web-based curriculum is being utilized to meet the needs of at-risk students and assisting them in graduating from high school. The institutions studied were select institutions that are recognized by the Indiana Department of Education as recognized alternative education providers as well as select known public school corporations, in East Central Indiana, who are using web-based curriculum credit recovery programs. I wanted to study and find the amount of success schools were experiencing in breaking away from the traditional school setting and addressing the needs of those students who are in jeopardy of failing to graduate. Additionally, I wanted to identify and investigate those corporations who were limited either financially or due to student population, but still managed to expand course offerings by utilizing web-based curriculum. I was particularly interested in those programs that were utilizing technology to engage students in the digital age.
Benefits of this Study:
You will be contributing to knowledge about the utilization of web-based curriculum programs and the role that it plays in the recovery or possibly acceleration of high school credit for at-risk students. After I am completed with the data collection, I will provide you with more detailed information about the purpose of the study and the research findings.

Risks or discomforts:
No risks or discomforts are anticipated from taking part in this study. If you feel uncomfortable with a question, you can skip that question or withdraw from the study altogether. If you decide to quit at any time before you have finished the questionnaire, your answers will NOT be recorded.

Confidentiality:
Your responses will be kept completely anonymous. I will NOT know your IP address when you respond to the Internet survey. As the researcher, I will be the only one to see your individual survey responses. The list of e-mail and participants will be stored electronically in a password protected folder. After I have finished data collection I will destroy the list of participants’ e-mail addresses.
Decision to quit at any time:

Your participation is voluntary; you are free to withdraw your participation from this study at any time. If you do not want to continue, you can simply leave the survey website. If you do not click on the "submit" button at the end of the survey, your answers and participation will not be recorded.

How the findings will be used:

The results of the study will be used for scholarly purposes only. The results from the study may be presented in educational settings and at professional conferences, and the results could be published in a professional journal in the field of Educational Leadership.

If you have concerns or questions about this study, please contact Mr. Shane Robbins at shaner@monroecentral.org or Dr. Joseph McKinney at jmckinney@bsu.edu. By beginning the survey, you acknowledge that you have read this information and agree to participate in this research, with the knowledge that you are free to withdraw your participation at any time.

Thank you for your participation.

William Shane Robbins
Ball State University
Doctoral Candidate
APPENDIX F

SURVEY QUESTIONS
USING WEB-BASED CURRICULUM TO ASSIST “AT-RISK” STUDENTS

1. The school is addressing the needs of at-risk students and providing opportunities for them to recover credits
 - Strongly Agree
 - Agree
 - NA
 - Disagree
 - Strongly Disagree

Other (please specify)

2. The administrators support the use of web-based curriculum as a means of credit recovery in our school
 - Strongly Agree
 - Agree
 - NA
 - Disagree
 - Strongly Disagree

Other (please specify)

3. The school supports the use of web-based curriculum – in terms of teachers involved, facilities and finances
 - Strongly Agree
 - Agree
 - NA
 - Disagree
 - Strongly Disagree

Other (please specify)

4. The teachers support the use of web-based curriculum as a means of credit recovery in our school
 - Strongly Agree
 - Agree
 - NA
 - Disagree
 - Strongly Disagree

Other (please specify)
5. The community supports the use of web-based curriculum as a means of credit recovery in our school
 - Strongly Agree
 - Agree
 - NA
 - Disagree
 - Strongly Disagree

 Other (please specify)

6. Students support the use of web-based curriculum – in terms of usage, appreciation etc
 - Strongly Agree
 - Agree
 - NA
 - Disagree
 - Strongly Disagree

 Other (please specify)

7. When compared to past achievement, students in the web-based curriculum program achieve at or above past achievement levels
 - Strongly Agree
 - Agree
 - NA
 - Disagree
 - Strongly Disagree

 Other (please specify)

8. Web-based curriculum has contributed to positive gains in our schools graduation of the students
 - Strongly Agree
 - Agree
 - NA
 - Disagree
 - Strongly Disagree

 Other (please specify)
9. There is evidence of an increase in the student’s on-task behavior when utilizing web-based curriculum
 ☐ Strongly Agree
 ☐ Agree
 ☐ NA
 ☐ Disagree
 ☐ Strongly Disagree
 Other (please specify)

10. When students make errors it is received with quick feedback and they have increased confidence
 ☐ Strongly Agree
 ☐ Agree
 ☐ NA
 ☐ Disagree
 ☐ Strongly Disagree
 Other (please specify)

11. Computer-Based Instruction alone is successful as a method for helping students recover credits
 ☐ Strongly Agree
 ☐ Agree
 ☐ NA
 ☐ Disagree
 ☐ Strongly Disagree
 Other (please specify)

12. Web-based curriculum challenges students appropriately and gives them some choice or control over activities and instruction
 ☐ Strongly Agree
 ☐ Agree
 ☐ NA
 ☐ Disagree
 ☐ Strongly Disagree
 Other (please specify)
13. Computer based student-centered instruction helps create a learning environment for increased motivation

- Strongly Agree
- Agree
- NA
- Disagree
- Strongly Disagree

Other (please specify)

14. The lack of interactive features of the face-to-face classroom such as immediate feedback, physical cues, and a sense of community does not affect student performance

- Strongly Agree
- Agree
- NA
- Disagree
- Strongly Disagree

Other (please specify)

15. In our school, students must fail a traditional teacher led course before taking a web-based curriculum credit recovery course

- Strongly Agree
- Agree
- NA
- Disagree
- Strongly Disagree

Other (please specify)

16. It is common for students to intentionally fail courses to avoid a teacher led classroom

- Strongly Agree
- Agree
- NA
- Disagree
- Strongly Disagree

Other (please specify)
17. The lack of technology skills eliminates some students from accessing web-based curriculum as a credit recovery tool

- Strongly Agree
- Agree
- NA
- Disagree
- Strongly Disagree

Other (please specify)

18. Not all students have access to the technology necessary to utilize web-based curriculum

- Strongly Agree
- Agree
- NA
- Disagree
- Strongly Disagree

Other (please specify)

19. Our school offers after-hours access to computer labs to make up lost credits using web-based curriculum

- Strongly Agree
- Agree
- NA
- Disagree
- Strongly Disagree

Other (please specify)

20. We have expanded our use of web-based curriculum, as a means of credit recovery, over the past five years

- Strongly Agree
- Agree
- NA
- Disagree
- Strongly Disagree

Other (please specify)
21. The use of web-based course offerings has created a reduction in the teaching staff at our school
 - Strongly Agree
 - Agree
 - NA
 - Disagree
 - Strongly Disagree

 Other (please specify)

22. Web-based curriculum classes are offered in our school as a means to increase course offerings
 - Strongly Agree
 - Agree
 - NA
 - Disagree
 - Strongly Disagree

 Other (please specify)

23. Without web-based curriculum certain course offerings would not be available due to a lack of licensed personnel in the specified content area
 - Strongly Agree
 - Agree
 - NA
 - Disagree
 - Strongly Disagree

 Other (please specify)

24. Without web-based curriculum, certain course offerings would not be available, due to a lack of student requests necessary to create a full section
 - Strongly Agree
 - Agree
 - NA
 - Disagree
 - Strongly Disagree

 Other (please specify)
USING WEB-BASED CURRICULUM TO ASSIST "AT-RISK" STUDENTS

Institutional Review Board

DATE: May 24, 2011

TO: William Robbins, EdD

FROM: Ball State University IRB

RE: IRB protocol # 242421-1

TITLE: Using Web-Base Curriculum to Assist "At-Risk" Students

SUBMISSION TYPE: New Project

ACTION: DETERMINATION OF EXEMPT STATUS

DECISION DATE: May 24, 2011

The Institutional Review Board reviewed your protocol on May 24, 2011 and has determined the procedures you have proposed are appropriate for exemption under the federal regulations. As such, there will be no further review of your protocol, and you are cleared to proceed with the procedures outlined in your protocol. As an exempt study, there is no requirement for continuing review. Your protocol will remain on file with the IRB as a matter of record.

Editorial notes:

1. EXEMPT LEVEL REVIEW

While your project does not require continuing review, it is the responsibility of the P.I. (and, if applicable, faculty supervisor) to inform the IRB if the procedures presented in this protocol are to be modified or if problems related to human research participants arise in connection with this project. Any procedural modifications must be evaluated by the IRB before being implemented, as some modifications may change the review status of this project. Please contact please contact Jennifer Weaver Cotton at 765-285-5034 or jmweavercot@gmail.com if you are unsure whether your proposed modification requires review or have any questions. Proposed modifications should be addressed in writing and submitted electronically to the IRB (http://www.bsu.edu/irb) for review. Please reference the above IRB protocol number in any communication to the IRB regarding this project.

Reminder: Even though your study is exempt from the relevant federal regulations of the Common Rule (45 CFR 46, subpart A), you and your research team are not exempt from ethical research practices and should therefore employ all protections for your participants and their data which are appropriate to your project.