THE MAKING OF

MADE IN INDIANA

AN EXPERIMENTAL DOCUMENTARY

USING STYLISTIC ELEMENTS TO PRODUCE A UNIQUE VISUAL NARRATIVE

A CREATIVE PROJECT

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE

MASTER OF ARTS IN TELECOMMUNICATION (DIGITAL STORYTELLING EMPHASIS)

BY

JOE VELLA

DR. JOE MISIEWICZ, PROFESSOR OF TELECOMMUNICATIONS

BALL STATE UNIVERSITY

MUNCIE, INDIANA

MAY 2012
CHAPTER ONE
INTRODUCTION

Made In Indiana is an experimental documentary that uses stylistic elements in order to produce a unique visual narrative. These aesthetic elements help to construct a story of the Midwest. *Made In Indiana* does not rely on traditional storytelling, but portrays iconic Midwest imagery about the people, places, and actions of its inhabitants. By communicating with a strong visual discourse the audience is made to disregard everything that is not shown on screen. Furthermore, through the development of visual elements, I attempt to create a narrative that allows the audience to forget the person and place, while recognizing the symbolic imagery on screen. This creates a feeling of nostalgia and appreciation of a larger group, the Midwest, and not just the particular person being shown on screen. The audience will not glean a traditional story arc from these characters but will learn about a greater population of Midwesterners.

To correctly understand, my central aesthetic objectives, the images shown to the audience are required to be different than anything else they have seen before. The images shown may not be of enough interest to the viewer for them to
stop worrying about the specifics and focus on the general overall picture. To achieve this, an almost abstract environment had to be created for viewers to be able to understand the images in the right aesthetic. Slow motion has been used to create abstract realistic environments in cinema and commercials. Therefore, *Made In Indiana* takes advantage of this socially trained aesthetic principle by capturing the beauty of everyday Indiana moments. Forcing the viewer to witness each event by altering the temporal display of content, the activity is re-visualized for the audience. The use of slow motion allows for a new audience appreciation of a daily life. It also allows the viewer to see the visual language written by the powerful aesthetic in the images of everyday actions, as something more than simple routine and create a sense of appreciation for this lifestyle.

Slow motion video has taken a major step forward in recent years due to advancements in digital technology. The first digital cameras that were made in early 1970’s were only capable of 240 frames per second with a relatively small resolution (“Motion Engineering Company,” n.d). As of 2012, cameras can record at extremely high resolution, beyond high definition (1920x1080), and frame rates over a thousand frames per second (“Vision Research,” 2010). However, these modern cameras are very expensive and are often out of reach for most productions, save major motion pictures and studios. However, there is hope on the horizon for small-budget film producers. The price of high quality digital slow motion is dropping. One example of this is Kodak released a high-speed camera during the early 1980’s that recorded to analog tape in black and white with a sales
price around $140,000 dollars or $386,806 dollars when adjusted for inflation ("Motion Engineering Company," n.d). Compare this to the high-speed camera used to make this film, the RED Epic, which records at a higher quality and utilizes a digital recording system and only costs $58,000 dollars ("Red Digital Cinema," 2012).

Although the cost of using the most advance camera capable of slow motion capture is expensive, there are a growing number of substitutions for smaller budgets. The falling price point of slow motion technology is the reason this film could be made. This is the first time that a camera that is capable of recording at such a high quality is available to independent productions.

The film Made In Indiana utilized the newest camera technology available. The film was made using the most advanced camera from the manufacturer RED Digital Cinema, the RED Epic. The Epic is a camera that is capable of shooting 300 frames per second, which is ten times faster than normal speed. The RED Epic can also record at a resolution of 2048 pixels wide, which is larger than traditional 1920 pixel used in High Definition video. The release of the RED Epic marks an important point in camera technology because of its ability to record at such a high frame rate while still recording at a very high-resolution. The RED Epic will allow for a new trend of slow motion photography in digital cinema as cinematographers and cameramen begin to utilize the digital technology. It will allow for the advancement of the domain of digital storytelling by giving professionals a new tool for telling their story, with the use of slow motion video. Slow motion photography has
become very popular and can be seen in a wide array of current media productions and will not fade away. The slow-motion aesthetic will become even more prevalent as the demand for the technology drives the price down and the speed of capture and the resolution up. Currently, slow motion is only utilized in high budget major motion pictures and very high quality commercials. An example of this high cost is one of the more popular high-speed cameras produced by camera manufacturer Vision Research which sells for 140,000 dollars for the camera body only, no lens or accessories, according to Chris Kerr Vision Research’s American sales manger. (C. Kerr, personal communication, March 28, 2012).

With the invention of new technology that is utilized in the RED Epic, the cost of slow motion is coming down and will be able to be used by more people. Music videos, documentaries, and low budget features will benefit most from the lower cost of slow motion, because these types of productions usually have smaller production budgets and could not afford the high costs associated with slow motion. Due to the diminishing price of slow motion I believe that it will be implemented in more productions and this will cause the trend of slow motion to become a permanent fixture of the digital storytelling domain and become another technique for creative storytellers to employ.
CHAPTER TWO
THE HISTORY OF SLOW MOTION

Slow motion photography has been used in different ways since its inception, from industrial and scientific imaging, to aesthetic visual storytelling, and in major motion pictures. The ability to manipulate the visual playback speed of time has fascinated people since slow motion’s creation by an Austrian priest named August Musger in 1904. Musger was a priest, a physicist, and a fan of cinema and photographic equipment. He did believe that technology was crude and wanted to perfect it. He began work on a new system that could transport film at a faster rate. At the time projectors and cameras could only playback at a rate of 16 frames per second and the film was advancing in a non-uniform motion creating a choppy playback. Musger worked until he created a film transport system that allowed for faster playback speeds and a smoother uniform film transport speed. He received a patent for his creation of this new film technology in 1904, but in 1911, Musger’s lost the exclusive rights to slow motion film capture due to his failure of correctly paying the patent fee. Then in 1914, the Ernemann Company took Musger’s design and starting selling a slow motion camera system under its own name (“August Musger,” n.d). The Ernemann Company did not want the technology to be used for
slow motion film capture but to be incorporated into the company’s film projector products. The Ernemann Company stopped producing cameras shortly after but is still manufacturing specialty movie projectors.

Slow motion photography was not fully incorporated into the entertainment industry at first. Japanese Director Akira Kurosawa’s 1954 film *Seven Samurai* was one of first major motion picture to utilize slow motion for its storytelling and dramatic purposes (Dellamorte, A. 2010). A small number of earlier films used the technique of slow motion before *Seven Samurai*, but it was only for technical reasons. *Seven Samurai* used slow motion during two scenes in which the main character was in a sword fight (Ehrenstein D. 1999). *Seven Samurai* utilized slow motion footage to show how fast the main character could use his Samurai sword. This was the first time anyone had used the controlling of time for storytelling purpose. By slowing down the movements of the Master Samurai using slow motion film capture it allowed the director to create a feeling that the Master Samurai was actually moving faster than his enemies. This idea that slow motion is used to create a sense of speed is now used in a majority of modern action films. Although *Seven Samurai* was one of the first films to use slow motion photography during an action sequence, it was, the 1999 film, *The Matrix*, that brought slow motion to the forefront of popular culture. Before *The Matrix*, slow motion photography was mostly used in commercials and music videos as well as in industrial and scientific research. Other films would use the technique from time to time, but *The Matrix*
was a notable example of incorporating slow motion to create such dramatic fight and action scenes.

The films *The Matrix* and *Seven Samurai* took the use of slow motion and gave it a new purpose. Slow motion has always had a scientific use of seeing movement and motion that is not possible with the human eye, but these films gave slow motion an aesthetic purpose that allowed for a new wave of filmmaking and storytelling. Once directors and producers saw the dramatic effect that can be achieved by having control over time, slow motion became adapted into many films as well as television. As the demand for slow motion continues to grow the technology and cameras will continue to grow with it.

The first slow motion cameras utilized a rotating prism that would project the image onto the film by passing through the rotating prism. Each flat side of the prism would project an image onto the passing film. This method allowed for more images captured per second because it removed the need for a standard mechanical shutter as well as a traditional slower film transport through the camera. The extract rotation of the film transport and prism are synchronized (“HYCAM rotating prism,” 2012). The more sides the prism has the more images that are projected onto the film per second. In the 1930’s Kodak developed the first widely used high speed rotating prism film camera for Bell Telephone Laboratories (Waddell, J. 1966). The rotating prism method is still used in slow motion film cameras today and is capable of 3250 frames per second (“Photo-Sonics,” 2008).
The high price of film and the need to be able to see footage instantly created a demand for the development of digital high-speed motion capture cameras. The company, “Video Logic Corporation” released a tape based high-speed video system during the early 70’s (“Motion Engineering Company,” n.d). It was capable of 240 frames per second, but was captured at a very low quality. It was not until the 1990’s with the invention of new sensor technology that digital slow motion could be captured at rates and picture quality that were closer to that of rotary prism film cameras. Then a noteworthy turning point in high-speed digital cameras came during 2010 when Vision Research released a digital camera that is capable of 13,000 frames per second at a resolution of standard definition (“Vision Research,” 2010). This is a significant example of a turning point for digital camera technology replacing traditional film cameras systems for scientific research and throughout entertainment industry. As digital cameras continue to capture higher frame rates at higher quality the film prism system may finally become obsolete.

Although slow motion capture has gone through many technical advancements, the original concept that Musger invented in 1904, is still used. Slow motion has many different applications from military and scientific research, to aesthetic storytelling in cinema. No matter what the end product might be, slow motion has been a tool that people have not only utilized but also enjoyed since its creation.
Made in Indiana, started out as an idea to tell a story that was not about a specific narrative, but instead a collection of iconic visual narratives that make up a conceptual idea of life and labor in Indiana. Another purpose of the film was to push the boundaries of current digital cinema technology. Originally, shooting in slow motion was reserved for high budget productions due to the technical costs. However, at this point in time the price point for shooting this type of film has become more affordable as the technology has become more advanced.

Pre-production is the most important phase of any film’s creation; it is also the most challenging. Pre-production takes the longest amount of time, requires the most planning and identifies most of the problems a film will face. If a film is going to fail, it will likely be during this stage. The reason for this is the film’s production budget must be established and proper financing secured, either through fundraising or other methods. The source for funding for Made in Indiana was the 2011/2012, WIPB-TV Ball State University Student Grant Initiative (see Appendix D). This grant was a perfect fit for Made in Indiana because it was open only to Ball State students and had a total award of ten thousand dollars. The grant stated that
funding would be provided to a student with an idea for an original half-hour program. The first official step of pre-production for Made in Indiana was applying for this grant. It was the deciding factor as to whether this film would be made or not. I knew this was the only way to raise the funds needed for production costs while still maintaining creative control. A week after applying for this grant I received notice that our application was selected and the funds would be available for the production of Made in Indiana.

At this point in the pre-production process, it was time to form the crew. I needed a group of people that would work with me bring the idea to life. The crew was split into two sub-groups, producers and the production crew. The producers had the first major obstacle of the film to overcome, securing locations. Made in Indiana was going to need the very best locations so that I could truly showcase the beauty of Indiana. Also, the film needed to showcase as many interesting craftsmen as we could find throughout the state. After all the hard work done by the producing team, we came up with twenty diverse and interesting locations, everything from a cow farm to a custom metal fabrication shop (see Appendix A).

While the location scouting was in progress, a large problem surfaced within the legal agreement between Ball State and the camera equipment rental house, Daufenbach Camera. The problem centered on an insurance issue. Ball State would not provide insurance to the production team of Made in Indiana and required us to furnish our own proof of insurance. This was not the problem. Our insurance brokerage company could issue our production insurance. However, even though
Ball State was not providing the insurance, they still wanted to exercise control of the terms and conditions of the contracts between the insurance company and Daufenbach Camera. More specifically, the recurring rental fee clause caused issues, which states that if the camera were broken, the production (*Made in Indiana*) would have to pay the daily rental fee of the camera until it is repaired or replaced. With the daily rental fee of $2,600 for the RED Epic Camera, the potential liability for a large fee existed (see Appendix C). It was reasonable for Ball State to be worried about the possibility of a potential claim. The problem essentially boiled down to the rental company and our insurance broker did not want to include a third party (Ball State) in the contract, but preferred to deal directly with the producers of *Made in Indiana*. This problem took a few weeks to get worked out and on multiple occasions we were told the films first shooting date was going to be canceled. As the situation developed, it appeared as if we would need to cancel our shoot. We got a call from the Ball State legal department saying that all parties came to an agreement and the funds are to be released to begin production. It was finally happening. It was time to start the final stages of pre-production including scheduling and location scouting.

Members of the crew were all current Ball State students, which always makes scheduling difficult. Students already have the full time job of going to class and most have a second job. It felt wrong to ask the crew to miss class and work on this film. The solution was shooting on the weekends, which still required most of the crew to call off work for the days we were shooting. With our budget, we could
afford two weekends of renting the camera, cars and lighting equipment. The two weekends were divided into two categories, outside locations and inside locations. The reason for dividing the weekends as such was due to weather. It was important to the film that Indiana's fall foliage was shown and winter was approaching quickly. Another reason for splitting up the weekends was farming. The first weekend was perfectly scheduled during corn harvesting season so that we could film this. Agriculture and farming is a very important part of Indiana and needed to be in the film. By splitting up the weekends this allowed for all the outside shooting to be done before the season changed to winter.

Location scouting was the last major part of pre-production. After splitting up the weekends between exterior and interior shoots, the producers could officially contact and schedule shooting times with the people that agreed to be in the film. Location scouting is when a small selection of the crew travels to the shooting locations to investigate and attempt to anticipate any problems that may arise on the actual shooting day. Parking is always a problem that needs to be worked out prior to production. An example of this was our locations at Indiana University School of Music and Anderson University Glass Blowing Center. Both locations required us to get visitor parking passes or our vehicles would have been towed. So one of our producers contacted each university and secured a visitor-parking pass for the shooting dates.

Another major reason for location scouting is to meet the subjects who are going to be in the film and establish a relationship. I wanted to meet them before a
crew with a camera shows up and starting filming. Location scouting is important because it gives the director a chance to talk to the talent without a lot of distractions making them uncomfortable.

With pre-productions over it was time to start production. The best part of any filmmaking process is when all the planning and budgeting actually gets put into action. Made in Indiana was set to have two weekends of physical production time, for a total of five shooting days. The first and second weekend were both organized to operate the same way, the only difference was the locations. During both weekends, I met with the production team at 8:00 am on Friday. I prefer to have crew meetings at the start of every day. This way the producers and I can lay out the shooting schedule, talk about any safety concerns and work out what gear we need to bring. After the meeting, we loaded the cargo van and trailer with the lighting and camera gear. It was time to leave Ball State and drive four hours north to Chicago in order to pick up the camera at the rental house. We selected our locations along the route from Chicago heading back towards Muncie. Our first location, which was also our furthest north, was the Indiana Dunes. We arrived at sunset and were able to capture some great footage of the waves crashing off the rocks reflecting the sun.

We improved as a crew at every shoot location during the production. The loading and unloading of the gear became organized chaos. The entire crew became more efficient with the routine at each location.

At every location, the first step was to determine camera lens and lighting
needs, while the crew organized the equipment set up. I discussed what we were
going to do at that location with talent or the owner of the filming location. This
worked best because I only had a limited amount of time at each location and I
wanted to establish a trusting relationship with the people that we were filming.
The crew and I set up the lights and camera in the proper locations. After
everything was set and in the right position I directed the talent to come in and we
would start filming. Filming was actually the easiest and most enjoyable part of the
whole process. Directing the talent on camera and capturing their actions was
personally rewarding. Unfortunately, it is the part of the process that you get to do
the least of. Working with everyday people on camera can be difficult and
frustrating at times. They can become nervous and afraid of the camera. I spend
considerable time getting to know my talent to ensure they know and trust me. If a
person is comfortable talking to you without a camera directed at their face, they
usually can stay composed while on camera. Luckily we had no problems with our
talent reacting badly to the camera and everything went smoothly.

After shooting concluded for each location there was a mad rush to pack up
and move on. We made sure that we got everything we could out of each day of
production. We had to keep moving quickly throughout each day, and packing up
can always slow down a production. If people put gear back in the wrong location
or incorrectly it can become damaged. Every member of the production team was
assigned a specific task and after the first few locations they became very efficient at
set up and teardowns. The crew worked very hard both weekends and never lost
the positive energy that was on the set.

In total we covered twenty locations in five days and represented the entire state of Indiana. There were three graduate students and six undergraduate students who worked on this project, all of them giving up their personal time so that they could help me achieve my goal of creating a visual portrayal of a Midwestern way of life. There is no way that I could ever thank the people who made this documentary possible. This whole experience has taught me that if you find the right people to work with you can overcome any obstacle and accomplish a lot more than by working individually.
CHAPTER FOUR

PROBLEMS OCCURRED

This documentary has taught me more than I could have ever anticipated. I learned how to deal with insurance companies, rental companies, legal departments, and grant writing. Most importantly I learned how to capture high quality slow motion footage. I learned so much not because the ease of the production, but the complexity of the process.

I learned more from my mistakes than I did from my successes. This was the first time that I have ever worked with a camera that could record true slow motion. There are a lot of problems that can occur when you are stretching time. The first and most noticeable problem that occurs when shooting in slow motion is flicker. Flicker is caused when the camera captures the 60hz wavelength that all electronic lights discharge. This is only a problem when recording in a reduced frame rate or slow motion because a normal camera records in sequence with the 60hz wavelength and the flicker goes unnoticed. This is why the most common frame rates for cameras are either 30 frames or 60 framers per second. When a camera starts to record slower than 60 frames per second, a strobe like effect will occur due
to the pulsing of the lights. To overcome this flicker, I learned to use very large and powerful lights. This was one of the limitations we faced during this production.

We did not have enough money left over after the camera rental to rent lights big enough to overcome the 60hz flicker. I learned an important fact that when a production wants to use slow motion there are additional costs beyond just renting the camera. A production must be sure to factor in the high costs of using larger cinema quality lights. I was able to make do with the lights that we had by taking advantage of the sunlight during the exterior locations. Unfortunately some of the interior locations suffered.

Another lesson I learned was how to properly use camera movement while recording in slow motion. The speed at which you need to move the camera during a slow motion recording also needs to increase. If you want the camera to appear as if it is pushing in towards a subject at a normal speed, then the camera cannot be moved towards the subject at the same rate that it would if recording at a traditional frame rate. This is common sense, but the mistake I made was just how much faster you have to increase your movements. For there to be a noticeable movement during footage recorded in slow motion the cameras has to be moved rapidly. This also applies to camera pans and tilts. In general the higher the frame rate at which you are recording, the faster the camera must be moving for that motion to translate through to the final product.
This whole process of creating a film is very challenging, and requires you to work hard and make mistakes, but there is no better experience when everything comes together and you get to turn an idea into a creative reality.
Slow motion has many uses in the domain of storytelling and is an extremely useful tool in scientific research. Now that slow motion is becoming affordable, what will the role be in the future? Will slow motion become overused and quickly fade away back into the realm of only major motion pictures utilizing the technique? Will it be possible for slow motion to become a new standard in digital cinema or even another step forward? Will slow motion become so affordable that it works its way into every level of digital video?

Cameras that have been capable of producing slow motion have always been pushing the limit of the current sensor technology. It is one of the main driving forces behind major camera manufacturers’ research and development. Slow motion features have appeared in a few consumer grade cameras. The Casio Exilim ZR100 is capable at recording 1000 frames per second and the camera costs three hundred dollars (“Casio,” n.d). The drawback to this camera is the resolution. It can only record at a resolution of 224 pixels by 64 pixels, which is significantly smaller than standard definition, (640 pixels by 480 pixels) but this is not the only camera
with such capabilities. A few camera manufacturers are catching on to the trend of slow motion and are trying to develop cost effective alternatives.

Moore’s Law is a prediction created by Intel’s co-founder Gordon Moore, which states that the number of transistors on a chip will double approximately every two years (“Moore’s Law Inspires Intel,” n.d). In relationship to high-speed photography, this law suggests that the more transistors in a computer the more processing power, the more high-speed photography is possible. This is translated into how powerful the sensor (the electronic device that replaced film inside of cameras) of digital cameras can become. Nothing illustrates this better than the camera used to make this documentary, the RED Epic. The sensor technology that allows the RED Epic to be able to record 300 frames per second at a resolution greater than high definition did not exist a few years ago, but because of the trend that Moore’s law has created the technology is catching up with the demand. This trend of high quality lower cost sensor and camera technology will drive the camera makers to produce equipment that will be capable of recording at very high quality and frame rates.

Slow motion is a trending technique in the world of digital cinema and I believe it will not go away for a long time. Slow motion was a technique that was reserved only for big budget films but now has become a tool for a larger group of storytellers to use. In a few years time, as the technology is guided by popular demand, the world of slow motion may become available to even the lowest of consumer camera models making it accessible to anyone that can use a camera.
References

References Continued

http://www.red.com/products/epic

WP’s block diagram of the HYCAM rotating prism high-speed camera.

(2012, March 2). Retrieved from

http://www.fennet.de/walter.preiss/e/slomo_hy.htm
Appendix A
Location breakdown

First Weekend
DUNES
 • Sunset Waves
WINDMILL FARM
 • Sunrise Windmills
LEHE FARMS
 • Cows
 • Corn
 • Portrait
LAKE HOUSE
 • Horse Rider in the Woods
 • Portrait
 • Dogs jumping in lake at sunset
CAMPFIRE
 • Group
 • Marshmallow in Fire
 • Fire
 • Lantern
CLASSIC BLUE CAR
 • Outside Driving Classic Car
BARN
 • Hay
• Horse in Pasture
• Portrait

MOTORCYCLES
• Driving
• Portrait

DOWNTOWN INDY
• Down street towards center
• Capital building
• Tunnel
• City tops

TRAIN
• Approaching

NATURE
• Tree leaves
• Sun brightens
• Leaves blowing

Second Weekend

DUNELAND WOODCARVER
• Wood working
• Portrait

MOFB
• Plasma cutting torch
• Welding
• Portrait

RAY SKILLMAN’S CLASSIC CAR GARAGE
• Working on engine
• Working under the hood
• Portrait

GLASS BLOWING
• Heating up glass
• Start of blowing
• Final product
• Portrait

BLACKSMITH AND POTTERY
• Throwing clay
• Working with metal
• Portrait

VIOLIN MAKING
• Cutting the raw wood
• Forming the neck
• Final touches
• Portrait

LIMESTONE CARVER
• Using hammer and pick
• Brushing off dust
• Portrait
Appendix B

Budget

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Grant Request</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ryan Fernandez: Producer</td>
<td>$ 800.00</td>
<td>800</td>
</tr>
<tr>
<td>Joe Vella: Director/DP</td>
<td>$ 950.00</td>
<td>950</td>
</tr>
<tr>
<td>The Goodnight Fields: Composers</td>
<td>$ 500.00</td>
<td>500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supplies & Expenses</th>
<th>Grant Request</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED Epic Camera Rental - 2 Weekends@$2,000</td>
<td>$ 4,000.00</td>
<td>4,000</td>
</tr>
<tr>
<td>Glyph GT 062E 2TB Hard Drive</td>
<td>$ 300.00</td>
<td>300</td>
</tr>
<tr>
<td>Audio Studio Recording Fees</td>
<td>$ 500.00</td>
<td>500</td>
</tr>
<tr>
<td>Insurance</td>
<td>$ 900.00</td>
<td>900</td>
</tr>
<tr>
<td>Miscellaneous Equipment (batteries, tape, etc.)</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Expenses</th>
<th>Grant Request</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation (8 passenger BSU van & trailer)</td>
<td>$ 1,300.00</td>
<td>1,300</td>
</tr>
<tr>
<td>Hotels</td>
<td>$ 150.00</td>
<td>150</td>
</tr>
<tr>
<td>Post Production Supplies (DVDs, blu-rays, software)</td>
<td>$ 300.00</td>
<td>300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>Grant Request</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$ 10,000</td>
<td>$ 10,000</td>
</tr>
</tbody>
</table>
Appendix C

Equipment and Rental Information

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
<th>Days</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Red Epic-M Base Package</td>
<td>1,600.00</td>
<td>1.0</td>
<td>1,600.00</td>
</tr>
<tr>
<td>1 18mm Zeiss Super Speed</td>
<td>95.00</td>
<td>1.0</td>
<td>95.00</td>
</tr>
<tr>
<td>1 50mm Zeiss Super Speed</td>
<td>95.00</td>
<td>1.0</td>
<td>95.00</td>
</tr>
<tr>
<td>1 135mm Zeiss Prime</td>
<td>95.00</td>
<td>1.0</td>
<td>95.00</td>
</tr>
<tr>
<td>2 Redmag 1.8" SSD 128GB</td>
<td>150.00</td>
<td>1.0</td>
<td>300.00</td>
</tr>
<tr>
<td>1 Arri LMB-15 Matte Box System</td>
<td>50.00</td>
<td>1.0</td>
<td>50.00</td>
</tr>
<tr>
<td>1 90mm Clamp Adapter (LMB-15)</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Element Technica Mantis Handheld System:</td>
<td>50.00</td>
<td>1.0</td>
<td>50.00</td>
</tr>
<tr>
<td>1 Pelican 1450 Case</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Pelican 1300 Case</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Innenspace Battery Case</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Pelican 1550 Case</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ET Handle Riser (EPIC)</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 RED Top Handle</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loss payee coverage needs to have a limit covering the following replacement cost: $79,057.72

<table>
<thead>
<tr>
<th>Notes</th>
<th>Rental</th>
<th>Less Discount</th>
<th>Shipping</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Equipment Rental Order Form (the "Rental Order") is by and between Daufenbach Camera, LLC ("Company") and the Customer listed below. This Rental Order is subject to the Daufenbach Camera, LLC Standard Terms and Conditions of Equipment Rental (the "Terms and Conditions"), which are attached hereto and incorporated herein by reference. This Rental Order and the Terms and Conditions (collectively, the "Agreement"), shall be immediately effective upon signing and shall remain in effect until cancelled by Company or, if cancelled by Customer, until return of any and all Equipment and payment of any and all outstanding invoices including those for damage or loss. This quote and all others documents transmitted by email to Lessee contemporaneously with this Quotation are the Transaction documents and collectively constitute the Contract between the parties respecting the lease the Equipment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,285.00</td>
<td></td>
<td></td>
<td>2,285.00</td>
</tr>
</tbody>
</table>

| GRAND TOTAL | 2,285.00 | Deposit | 0.00 |

| Amount due | 2,285.00 | | |
Appendix D
Grant Proposal

We often overlook the beauty in the minutiae of everyday routines – buried beneath the frantic pace of modern life. We ignore the world around us by failing to stop and appreciate the wondrous nature that surrounds us everyday. However, modern media technology now provides us the opportunity to respect the detailed nuance of our normal surroundings. We are proposing to instill just such an experience with our proposed experimental documentary, tentatively titled: The United State of Indiana. Using the newest camera technology, The United State of Indiana will capture the beauty of everyday Indiana moments by uniting routine occurrences, re-visualized with high speed photography. This will be played back at normal speeds (super slow-motion or ‘slowmo’).

We have three primary objectives with The United State of Indiana:

1). To provide an educational opportunity for staff and students on the use of high speed photography.

2). To finish a 30-minute, ready-for-broadcast documentary, as well as to provide 15 and 30-second station promos/tags. In addition, we wish to refresh the stock footage library for WIPB-TV.

3). To inculcate a deep appreciation, using a strong aesthetic approach, by uniting the everyday surroundings of life in the Midwest, packaged in a succinct presentation.

United State of Indiana as an Educational Tool:
This project allows all participants the opportunity for hands-on training with the newest digital cinema technology. Our plan includes the utilization of the RED Epic digital cinema camera. The Red Epic was released to the public earlier this year. It has been used to shoot several prominent motion pictures including The Social Network and Winter’s Bone. The Red Epic has the ability to shoot 300 frames-per-second at a 2K image resolution (2048x1080). This means a delivery of slow-motion footage at a cinematic image resolution, beyond traditional ATSC standards.

By awarding this grant to the production team of The United State of Indiana, you will provide three undergraduate and three graduate students the opportunity to work with a high-end professional camera. It is a learning experience that also teaches the process of pre-production, industry rental agreements, and insurance considerations.

Documentary and Stock Footage:
The inspirations for this documentary comes from the lives of two outsiders from Ohio, who have developed an objective appreciation for the beauty of Indiana an often overlooked state in the Midwest. Slowing down real time provides the
opportunity for the viewer to appreciate the moment – united in an aesthetic manner, beyond what is naturally possible. In addition, the documentary footage will be delivered and categorized to refresh WIPB’s stock footage library, for use in station promos/tags.

An Aesthetic Approach to the Everyday
While we recognize that this is an untraditional approach to narrative filmmaking – we believe that the proposed technological methods will yield a strong aesthetic style, commanding a deep and almost spiritual appreciation for the daily occurrences in the routine of everyday life. In short: the technology forces a point of view, not possible with the human eye, united in a montage of connective beauty.

Final Thoughts
This project allows the filmmakers to work with WIPB again, a station that has provided a home for work and education for several of the team members over the course of the past several years. *The United State of Indiana* will provide an opportunity for Hoosiers to stop and appreciate a truly great Midwest state.