Designing a proactive multi-touch display to support professional networking and planning at an interdisciplinary conference

An Honors Thesis (CS 499)

by

Joshua Gevirtz

Thesis Advisor
Paul Gestwicki

Ball State University
Muncie, Indiana

May 2010

Expected Date of Graduation

May 2010
Designing a proactive multi-touch display to support professional networking and planning at an interdisciplinary conference

Senior Thesis for Joshua Gevirtz

Paper Authored by Paul Gestwicki, Carrie Arnold, and Joshua Gevirtz

Abstract: Presented in this report is the design of Confluence, a system that enables conference attendees to explore the various events scheduled to take place over the course of a conference and which informs its users of those events that may be of particular interest to them. This system was designed specifically for the 2009 International Digital Media & Arts Association Conference, which is notable for the breadth of interests of its attendees. One of the key features of this system is a proactive display: a display which shows content based on proximity of individuals in addition to standard program logic. In order to promote collaboration and communication of conference attendees, Confluence, which has been designed to run on the Microsoft Surface, supports interaction through a large, multi-touch display.
For my senior thesis, I have chosen to submit a paper that was authored by one of my computer science professors, Dr. Paul Gestwicki, one of my fellow students in the department, Carrie Arnold, and myself. This paper details the design of Confluence, a piece of software written by the three of us for the 2009 International Digital Media & Arts Association Conference (iDMAa). This software enhances professional networking and planning at interdisciplinary conferences. I believe this document serves as an excellent senior thesis because my involvement in the Confluence project represents the largest achievement of my undergraduate career. In addition to providing me with an excellent learning opportunity, this project allowed me to bring together much of the material that I had learned through my computer science coursework.

Courses in computer science, just like courses in any undergraduate concentration, cover a wide variety of subjects. In an algorithms course, one learns how to write pieces of software that answer very specific questions – how to sort and search lists efficiently, for example. Likewise in a data structures course, one learns how to efficiently organize data within a computer's memory. These and other topics are very important and their thorough study will lead to a set of good programming skills. In the world of software development, however, programming is only a small piece of the art of developing software. Arguably more important than programming itself is software design – when writing large programs, knowing how best to connect all the small pieces of programming in order to create a product that is functional, usable, and maintainable is crucial for the success of the project.

In order to help introduce students to software design, the Ball State Computer Science Department has a senior level capstone course. In this course, students work to develop software to the specifications of clients who are most frequently people and organizations outside of the university. As a computer science major, I took this course and learned a great deal about the process of writing large pieces of software. However, due to the great breadth of this subject, one course, even if it spans an entire year (as is the case with the capstone course I took), is not enough to truly learn the subject. The Confluence project afforded me a further opportunity to expand my software design skills. While the overall design of the program was primarily the responsibility of Paul – working within his framework allowed me to learn the principles of design from a perspective that I have not seen before. Additionally, this project provided me with a very instructive experience in working in a highly collaborative environment – not only did I collaborate with my fellow software developers, but the entire software development team was collaborated with the iDMAa conference organizers.

Confluence, which was written to run on the Microsoft Surface1, allows those attending interdisciplinary conferences to explore the various events that will occur over the course of the conference and informs its users of which of those may be of particular interest to them. A detailed description of the system is available in the accompanying document. One of the key features of Confluence is the ability of the software to sense the physical presence of conference attendees using RFID technology2. My responsibility in this project was to write the proximity detection portion of the program and to implement the part of the user interface that shows nearby attendees which events may be of interest to them. In order to accomplish the tasks assigned to me, I had to draw from the pool of programming skills that I have accumulated through my years as a computer science student. Though my history as a programmer predates the beginning of my tenure as a computer science student by many years, I could not have completed my duties without the experience and knowledge gained.

1 The Microsoft Surface is a computer with a 30 inch, multi-touch enabled, display that is mounted parallel to the floor. More information about this hardware is available at http://www.microsoft.com/surface
2 RFID stands for Radio-Frequency IDentification. Using this technology, attendees are identified through the use of small tags pasted onto their conference badges. Embedded in these tags is circuitry that allows a nearby antenna to detect the tags' presence. Specific details on the use of this technology in Confluence can be found in the accompanying document.
through my undergraduate career. The Confluence project, therefore, serves well as a showcase of the growth that I have experienced over the course of the past four years.

Acknowledgments

This work was supported by the Institute for Digital Intermedia Art, Emerging Media Initiative, and the Department of Computer Science at Ball State University as well as the International Digital Media & Arts Association. Special thanks are extended to John Fillwalk, Jesse Allison, Ina-Marie Henning, Erin Moore, and Dave Ferguson. In particular, I am grateful for the support of Dr. Paul Gestwicki and Carrie Arnold.
Designing a proactive multi-touch display to support professional networking and planning at an interdisciplinary conference

Paul Gestwicki
Computer Science Department
Ball State University
pvgestwicki©bsu.edu

Carrie Arnold
Institute for Digital Intermedia Arts
Ball State University
cmarnold2©bsu.edu

Joshua Gevirtz
Computer Science Department
Ball State University
jgevirtz2@bsu.edu

April 15, 2010

Ball State University
Computer Science Department
Technical report 2010-02

1 Introduction

We present herein the design of Confluence, a system that enables conference attendees to explore the conceptual space of a multidisciplinary conference, to make deliberate decisions about the relative values of sessions with respect to personal interests, and to promote impromptu mutual revelation in a fluid social context. It is a novel proactive interface whose main components are a multi-touch tabletop interface, radio frequency identification, and custom information visualization software.

The system was designed specifically for the 2009 International Digital Media & Arts Association Conference, which is notable for the breadth of interest of its attendees, including art, humanities, technology, social sciences, usability, education, and business. The mission of the International Digital Media & Arts Association (iDMAa) is to promote the development, application, and understanding of digital media and arts. The organization represents educators, practitioners, scholars, and organizations with interest in digital media and arts. The organization’s seventh conference was held in 2009, and it served as a test for Confluence.

Complications of Multidisciplinary Conferences

Conferences serve several important purposes for both academics and practitioners. Conference organizers promote the theme of a conference by gathering speakers, papers, tutorials, panels, and so on. Thus, the organizers seek to advance understanding and the state of the art within their areas of interest. Individual attendees have the opportunity to disseminate their work, learn new skills, and develop social and professional networks. McCarthy et al. describe this as mutual revelation, “allowing attendees to learn more about others and their work, as well as being open to opportunities to tell others about themselves and their own work.”

Effective mutual revelation depends upon attendees’ shared interests and similar expertise. An attendee who knows little about the conference domain will have difficulty integrating information shared by other attendees. Normally, this problem is avoided implicitly since, generally, only individuals who are interested in the conference domain would attend a disciplinary conference. However, multidisciplinary and interdisciplinary conferences pose a particular problem: the attendees, by definition, come from a wide variety of background and represent a broad range of expertise. That is, it is no longer the outliers who are potentially perplexed by conference activities but the majority.

Proactive Interfaces

A proactive interface is one that shows content based on a combination of program logic and proximity of individuals. This is in contrast to conventional interfaces, which are reactive: they respond to discrete user interactions such as mouse, keyboard, or voice commands. In this project, we use radio-frequency identification (RFID) to detect the approach and departure of conference attendees. The interface changes proactively based on who is nearby, rather than strictly reactively.

We are not the first to see the potential for proactive interfaces to enhance the conference experience. Three prominent examples are AutoSpeakerID, Ticket2Talk, and the SpotMe Conference Navigator. AutoSpeakerID displays the information of speakers and questioners during sessions, providing people with a quick visual synopsis of who is asking a question, their interests, and their affiliation.3 Ticket2Talk serves as a conversation piece during breaks: it shows pictures of people near the display, along with a profile and interests.4 Both applications encourage social networking, though in different ways. Ticket2Talk is a direct integration with presentations, while AutoSpeakerID provides a more ambient experience. These two have been positively evaluated for their installation contexts, although the developers admit concerns about distraction and intrusiveness.5 The SpotMe Conference Navigator is notable for its applicability to conferences: it runs on a PDA and notifies the user when another attendee is nearby with a similar profile.6

Tagging Interests

Confluence helps attendees decide which sessions to attend by highlighting those that may be of interest, and by this, promotes enhanced mutual revelation. The team was inspired by the use of tags on Web-based social media as a means to this end. A finite set of tags was chosen rather than user-specified tags, since the latter introduces problems that are beyond the scope of this work.7 The set of tags, shown in Figure 1, was developed by analyzing past conference schedules and consulting with members of the community. These interest tags were incorporated into both the conference registration site and the paper submission site. Thus, every paper is tagged with interests that are represented in the work, and every attendee has the opportunity during registration to identify his or her interests.

Multi-touch Interaction on the Microsoft Surface

While the RFID provides a capacity for proactive interfaces, the Microsoft Surface provides multi-touch interaction in a tabletop computing environment. The tabletop orientation facilitates multiple users, and the recognition of multiple concurrent touches promotes collaborative use.

Primary among the design principles for multi-touch tabletop computing is direct manipulation: users interact directly with the interface content rather than through indirect widgets such as menus and text

4McDonald et al., 8-10
5McDonald et al., 18-20
7Cameron Marlow et al. “HIT06, tagging paper, taxonomy, Flickr, academic article, to read.” In HYPERTEXT ’06: Proceedings of the seventeenth conference on Hypertext and hypermedia. (ACM, 2006), 38.
Figure 1: The interest tags used in paper submissions and registration for iDMAa 2009

Designing direct manipulation multi-touch interfaces is a difficult design challenge as this technology is still in its infancy. All users in the intended audience are intimately familiar with the WIMP (Windows, Icons, Menus, and Pointers) paradigm, where learned affordances can be exploited to expose novel functionality. However, in multi-touch collaborative environments, practically all users (aside from the occasional researcher who focuses on this technology) are novices or advanced beginners. Therefore, in order to empower novice users while maintaining continuous collaboration in a fluid social environment, the interaction model must leverage clear affordances while supporting scaffolding toward more advanced use cases.

2 Design

The Surface-based interface is divided into three sections, as shown in Figure 2. These three sections are the Navigation Bar, the Workspace, and the Gutter. Figure 3 provides a screenshot of a pre-release build of Confluence, showing a sample interaction with the system.

Navigation Bar

The Navigation Bar displays the conference schedule. The 2009 iDMAa conference is a three-day event, and the three buttons at the top of the navigation bar represent the three days. Pressing one of these buttons selects that day, and the rest of the Navigation Bar is populated with the events from that day. For example, in Figure 3, the Thursday button is highlighted and so Thursday’s events are shown below it. Animated transitions are used to improve the aesthetics and the utility of the system. Specifically, animated transitions leverage cultural conventions to assist in developing the user’s mental model of time: the days’ schedules fly in from the left or right depending on whether the newly selected day is in the past or the future, in

10 Donald A. Norman. “Affordances, conventions, and design.” In *interactions.* (ACM, 1999), 41.
Figure 2: The three principle regions of the Confluence interface

Figure 3: Screenshot of a pre-release build of Confluence
accordance with this culture's left-to-right reading order.11

At any time, the Navigation Bar clearly shows, through color highlighting, which day and which conference event are selected. The name of the currently selected event in the Navigation Bar is also embedded into the Workspace background, so users who are not aligned for convenient reading of the Navigation Bar can also ascertain the current context by inspecting the Workspace background. Thus, the Navigation Bar and the associated Workspace background labels provide the context for the rest of the interactions, stable locations from which new users may acclimate themselves to the more complex Workspace and Gutter interactions.

\textbf{Workspace and Cards}

The workspace is the largest region of the interface, and it is where we expect the majority of attention to be focused. The workspace is a “scatter view,” an area in which items are placed that can be moved, scaled, and arranged using multi-touch interactions. Scatter views have featured prominently in the Microsoft Surface promotional materials and sample applications, and the interaction model is reminiscent of the popular multi-touch iPhone and iPod Touch devices from Apple: one finger will move an item, two fingers will scale an item, and interacting with any item will bring it to the “top.” We have also integrated a common idiom wherein the cards behave as if they have two sides. A quick tap of a card will cause it to “flip over,” revealing complementary information on the other side.

The Keynote, Plenary, and Presentation Cards are similar in design and intent. As representations conference presentations, one side shows the title, speaker, and abstract. The reverse side shows the title, speaker, and a photograph of the speaker. Also, this side contains a QR-code that links to the speaker’s profile page on the interactive conference Web site. The Session Cards are different: these are designed to assist users in seeing the contents of concurrent sessions at a glance. The Session Cards list the name of the session along with the names and authors of each of the presentations within that session. The reverse side shows a montage of speaker photographs along with the QR-code that encodes the event URL.

As in the Navigation Bar, animated transitions are applied for aesthetic and utilitarian purposes. When a new conference event is selected, those cards in the workspace are animated away from the navigation bar, which is also the dominant reading direction of the workspace background image. The new selections animate to random positions in the workspace from the navigation bar side of the interface, visually indicating that it was the navigation bar that caused the transition.

\textbf{Gutter, Attendee Icons, and Interest Lines}

The Gutter runs along the side of the workspace, and it is in this area that Attendee Icons are shown. These icons represent individuals who are detected to be nearby via the RFID system, and they show the attendee’s name as well as photograph, when available. Note that this means that the Gutter should never be empty when the interface is approached by a properly tagged attendee: rather, the attendee will immediately see a recognizable representation of him- or herself as part of the interface.

Strongly related to the Attendee icons in the Gutter are the Interest Lines. These lines connect Attendee Icons to those Cards in the Workspace that have corresponding interests. As mentioned above, these interest tags are selected by authors during paper submission and by attendees during registration. The intensity of the line indicates the degree of similarity. This is designed not only to help an individual attendee to easily see the conference events of potential interest, but also as a means for enhancing mutual revelation among concurrent Confluence users. The presence of the interest lines is intended to spark conversation among concurrent users, since each will be able to see how all are connected to the currently selected conference event.

11Norman, 41
Integration with the iDMAa Web Site

Confluence was developed in parallel with an experimental conference Web site that integrates social media with the iDMAa conference, as has been explored in related projects such as Pathable. The site was developed by the Institute for Intermedia Arts and Animation, and it features a unique page for each conference event. These pages link to professional and contact information about the speakers, including links to social networking services such as Facebook and Twitter.

As mentioned above, each card in the Workspace contains a QR-code that encodes a URL, as shown in Figure 2. Attendees with appropriate mobile devices, such as the Apple iPhone or Android-enabled phones, will be able to scan the QR code and be taken directly to the corresponding page on the interactive iDMAa conference site.

3 System Architecture

The system was implemented as a WPF-based Surface project in C# using Microsoft Visual Studio Professional, the .NET application framework with Windows Presentation Foundations, and Microsoft Surface SDK 1.0 SP1. The software integrates log4net, a logging library for Microsoft's .NET application framework. Log4net is part of the Apache project and is licensed under the Apache License, Version 2.0. This library is used for both debugging and for recording user interactions.

The system architecture uses a Domain Model to represent conference data, including the conference schedule, attendees, and interests. This data is processed during system initialization into an object-oriented, in-memory model. This serves as the Model of a reification of the Model-View-Controller architectural pattern. The Model is closely aligned with the domain, while the View and Controller classes are more closely aligned to the Microsoft Surface and Windows Presentation Foundation libraries and the specific needs of our interface.

The non-interactive portions of the system, including the domain model and XML processing subsystems, were developed following principles of test-driven development. Unit testing was conducted using Moq.

12 Shelly D. Farnham et al. "Leveraging social software for social networking and community development at events." In Proceedings of the fourth international conference on Communities and technologies. (ACM, 2009), 237–239.
17 Fowler, 330-332
18 Kent Beck. Test Driven Development: By Example (Addison-Wesley Professional, 2002).
19 Moq: The simplest mocking library for .NET 3.5 and Silverlight with deep C# 3.0 integration. http://code.google.com/
Test-driven development and unit-testing helped ensure the functionality of these core subsystems as the internal and external data representations were iteratively developed.

Presence Detection through RFID

RFID technology is employed in our project in fashion similar to that of Ticket2Talk and Neighborhood Window. We used an ALR-9650 RFID reader and associated tags by Alien Technology. The antenna is placed above the Microsoft Surface unit on which Confluence software is running. Passive RFID tags are put on each attendee’s name tag. The RFID reader was connected, through a standard ethernet connection, to the university’s network. Upon initialization, Confluence listens for broadcasts sent by the reader. Once a broadcast is received, the software establishes a connection with the RFID reader and creates a thread that periodically polls it for tag presence information. When this thread detects that an attendee has left or arrived, the information is propagated to the necessary portions of the program.

The presence detection subsystem is based on the ProD framework. The approach and departure of attendees is detected by the RFID reader. Since there is a finite amount of space for Attendee Icons, a queuing system ensures that attendees are processed in the order they arrive.

Data Representation

Confluence loads conference information from a set of configuration files. The two most important are encoded in ConferenceML and PeopleML, XML-based file formats that were designed specifically for this project. ConferenceML is used to represent all of the conference data, including the schedule of events, the interests corresponding to those events, and the speakers at each event. PeopleML represents the conference attendees, including their names, affiliations, and interests.

These two types of information are represented separately due to the volatile nature of attendee lists. Conference events are generally fixed in advance of the conference, but the list of attendees almost always changes due to on-site registrations and unforeseen impediments to attendance. Representing attendees separately from the conference allows us to easily upload new attendee information to the installation.

The Navigation Bar and all Workspace cards are automatically generated from ConferenceML. This facilitated the rapid prototyping of design ideas, since the initial design began well in advance of the iDMAa 2009 call for papers and therefore well before schedule finalization. Certainly, a graphic artist could likely create a visual representation of a specific schedule that is more visually appealing than a generic, computationally-generated one. However, given the time and human resources constraints of this project, the benefits of automatic generation and the rapid prototyping it facilitated were determined to outweigh the theoretical aesthetic costs.

4 Discussion

Confluence is a hybrid of proactive and reactive interaction, the former through RFID and the latter through the Microsoft Surface. The team followed an iterative design process for both aspects of the system. For the multi-touch interface, physical prototypes were first used to simulate on-screen interactions (Figure 5). This led to the development of electronic prototypes (Figure 6) for both the proactive and reactive subsystems, and these prototypes were used to generate feedback into the iterative design process. For example, the RFID system was simulated in Surface control so that the multi-touch behavior could be tested as if the presence detection system were completely operational. Problems with the reactive system could be fixed while the proactive system was still being developed, and vice versa. We found that a direct manipulation, multi-touch interaction paradigm lends itself naturally to physical prototyping. Physical prototyping not
Figure 5: Paper prototyping on the Microsoft Surface

Figure 6: Electronic prototyping on the Microsoft Surface
only helped us simulate possible interactions, but it allowed us to see how quickly our objects would clutter up the workspace.

Early Designs

The design and development of this project began in Summer 2009 following discussions with the Institute for Digital Intermedia Arts at Ball State University and representatives of the International Digital Media & Arts Association. The team spent most of the Summer acclimating themselves with the technology and the philosophy of hybrid proactive/reactive interface development. This led to the design of a system that encourages social networking through an interactive “interest graph,” similar in some ways to Neighborhood Window. This system used the GraphViz library for a force-directed, spring model for automatic graph drawing. However, there were two major complications with this design. First, the automatic layout of items conflicted with the direct manipulation that is both natural on a tabletop computing device and recommended by the Surface design guidelines. Second, we found that the working area of the Microsoft Surface was too limited to display this information adequately, according to our desired visual designs. In retrospect, these conclusions would have arisen more quickly had the team incorporated physical prototyping more rigorously; while the specific software developed in this first iteration was abandoned, the lessons allowed us to make much faster progress on the design of what became Confluence.

Complications of Website Integration

As mentioned above, Confluence integrates with an interactive conference Web site through embedded QR codes. The site allows attendees to share professional contact information and also to participate in Web-based discussion about the conference and associated projects. Early designs of Confluence included similar functionality, such as the ability to drag representations of individuals together to share contact information. However, this design introduced two significant problems. First and more importantly, it is not possible within our design to authenticate that a user is a specific conference attendee, and so it would be possible for third parties to create social media connections between two other people. The presence detection system would have ensured that at least the attendees’ badges would be nearby to initiate such a connection, but this design clearly introduces identification uncertainty. The second problem is that the semantics of combining individuals was determined not to be immediately clear. Hence, the interaction would require a notification and verification. Traditional dialog box confirmations would be out of place in a collaborative multitouch interaction space, and so the visual design would need to be augmented to include specific references to social network interactions. Such a design was outside of the scope of the project, although it could be considered for future work.

5 Evaluation Plan

User interface evaluation is a necessary component of human-computer interaction research as well as the practical design process. For this project, we have incorporated three forms of evaluation: pre-conference design evaluation, post-conference quantitative usage evaluation, and post-conference subjective evaluation. The pre-conference design evaluation involved input from several user interface experts as well as prospective conference attendees. Interface experts’ suggestions were incorporated into the visual design and interaction designs where possible, although several were unable to be incorporated before the conference. Because the system is designed specifically for use at a conference, it was impossible to test ahead of time in a realistic venue. Instead, the team solicited input from potential conference attendees — those with an interest in

22McDonald et al., 10-13
digital media and arts — to determine if the interface would be usable by the intended audience. Several modifications were made to the original design based on feedback from experts and users, as well as by narrowing of the project focus and goals.

During the iDMAa conference, all interactions with the system will be logged. It is not possible to ascertain the originator of any interactions, and so interactions will be anonymous. The logs will indicate which RFID tags are nearby and from this we can determine who was in the vicinity during interactions, but it is not possible to know who is actively using the system or their intentions. The logs themselves are text files that are designed to present as much information as possible while still being easily parsed for post-conference analysis. Logs are also used for system debugging. The salient events that are logged for usage evaluation include: approach of an attendee; departure of an attendee; display of an Attendee Icon; removal of an Attendee Icon; selection of a day from the navigation bar; selection of a conference event (keynote, session, concurrent session, or plenary); and direct manipulation of an event’s virtual card.

The subjective evaluation will be conducted via an on-line survey. A link to this survey will be emailed to conference attendees shortly after the conference concludes. Attendees who used Confluence will be asked a series of questions regarding their experience with the visualization system. Responses will be gathered on a five-point Likert scale for ease of encoding. Any additional comments will be analyzed using qualitative coding techniques.

6 Conclusions and Future Work

Confluence integrates proactive and reactive interfaces by combining RFID presence processing with a multi-touch tabletop interface. This design is intended to improve the mutual revelation and professional networking that takes place at conferences, which can be challenging at multidisciplinary conferences such as iDMAa. Following the best practices of proactive interfaces facilitated the design and development of this system. The ProD framework also provided a useful reference model for data flow in a presence detection and processing system. The evaluation plan is designed to provide insight into the utility of the current system as well as direction for future development.

Several features have been explored and prototyped during the iterative design process, and many of these have not been incorporated into the iDMAa experience. Particular features that are expected to further enhance the goals of the system include integration with social networking sites such as Facebook and LinkedIn as well as real-time editing of interests and on-line profiles, akin to the approach taken by Pathable. Authentication and security are two of the primary challenges of including these into a system such as ours. We have also explored the potential for integration of machine learning and data mining algorithms. These could be used, for example, to incorporate explicit event suggestions to users based on their interests, an enhancement of the current ambient recommendation system that shows connectivity between Attendee Icons and Event Cards.

Acknowledgements

This work was supported by the Institute for Digital Intermedia Art, Emerging Media Initiative, and Department of Computer Science at Ball State University as well as the International Digital Media & Arts Association. We are especially grateful for the assistance and support of John Fillwalk, Jesse Allison, Ina-Marie Henning, Jessica Gestwicki, Erin Moore, and Dave Ferguson.

\[25\] McDonald et al., 27–28
\[26\] Congleton et al., 223–226
\[27\] Farnham et al., 237–239
References

Norman, Donald A. “Affordance, conventions, and design.” interactions 6, 3: (1999) 38–43.