A POLYNOMIAL TIME HEURISTIC ALGORITHM FOR
CERTAIN INSTANCES OF 3-PARTITION

A THESIS
FOR THE DEPARTMENT OF COMPUTER SCIENCE
AT BALL STATE UNIVERSITY
SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS
FOR THE DEGREE
MASTER OF SCIENCE
IN COMPUTER SCIENCE

BY
RONALD DOUGLAS SMITH
PROFESSOR DOLORES ZAGE - ADVISOR

BALL STATE UNIVERSITY
MUNCIE, INDIANA
MAY 2014
ACKNOWLEDGEMENTS

Special thanks to Professor Frank W. Owens who challenged the class to improve upon known algorithms for Karp’s 21 original NP-Complete problems which inspired an epiphany and resulted in a new algorithm for 3-Partition.

Special thanks to Professor Wayne M. Zage for his masterful insight and direction in how best to write a research proposal and a thesis.

Special thanks to Professor Dolores Zage for her technical programming skills, strategizing skills and management expertise in crafting the thesis.

Special thanks to Professor Lan Lin for her insights into computational complexity and for her crucial help with improving the central ideas of the algorithm.
TABLE OF CONTENTS

I. Problem Description 4

II. Research Objectives 8

III. Definitions 10

IV. Literature Review 13

V. Importance of the Study 17

VI. Research Design 18

VII. Conclusions and Discussion 24

VIII. References 30

APPENDICES.

Appendix A. Valid Subsets 32

Appendix B. User Manual for Recursion Algorithm 34

Appendix C. 3-Partition Source Code 35

Appendix D. Random Inputs Source Code 42

Appendix E. BitSet Stack Implementation 43

Appendix F. BitSet Snippets of Code 44

Appendix G. A Large Solution for Inputs 1 through 2523 46
I. **Problem Description**

i. **NP-Complete Problems**

There are problems in computational complexity so difficult that the only known ways to solve them are impractical. A problem that has a few hundred inputs may take more time to solve with a super computer than the time that has passed since the beginning of the universe. These problems, called NP-Complete problems, do have solutions. Some can be easily solved until a phase transition point is reached after which they become intractable. For others, the ‘strongly’ NP-Complete problems, there is no range of inputs that has known useful algorithms. 3-Partition falls into the second category.

Polynomial (P) time is considered to be a reasonable amount of time to solve a problem, and is bound by the number of inputs. Nondeterministic polynomial (NP) time is not since all known algorithms are exponential. When the number of inputs is large enough, n^{10} is faster than 10^n. Pseudo-polynomial time, though exponential, is bound by the number of inputs and the magnitude of the largest input. Pseudo-polynomial time falls somewhere between polynomial time and nondeterministic polynomial time.

The solution to an NP-Complete problem can be recognized by a nondeterministic polynomial (NP) time Turing machine. If an NP-Complete problem can be solved in polynomial (P) time (or pseudo-polynomial time for a strongly NP-Complete problem) then P = NP is true.
Problems in P are easy to solve while problems in NP are easy to check. Password permutations are an example of a problem in NP. It is easy to check to see if a password is correct, but it may require many permutations of characters to solve a password. If we were able to devise an algorithm that solved one NP-Complete problem in polynomial time that would imply that all NP-Complete problems have undiscovered ‘reasonable’ solutions because problems such as these can be reduced [19] to one another in polynomial time.

If P = NP is true, the implications are profound. A mathematical proof of ‘reasonable’ length could be computed by a program. Combinatorial problems such as recombinant DNA or logistics could be computed far more easily. Some applications that rely on problems that are easy to build but difficult to solve may suffer, such as security. Difficult problems would still exist but they may become nearly as hard to devise as they are to solve.

Even if P = NP is false, the NP-Complete class of problems is so pervasive that innovative workarounds for special cases are constantly being discovered. It is also known that some algorithms for NP-Complete problems exhibit exponential complexity only in the worst case scenario and in the average case can be solved with polynomial time algorithms [13]. One such class of NP-Complete problems is Partition. However, our specific problem 3-Partition is different from Partition in that it has no pseudo-polynomial time algorithm thus identifying it as strongly NP-Complete.

The focus of this thesis will be solving instances of the strongly NP-Complete problem 3-Partition. No attempt will be made to resolve the open question of P versus NP.

ii. 3-Partition

Informally, 3-Partition asks: Can you divide 3m inputs into m subsets of three elements each such that each subset sums to the desired amount and includes each input once? The 3-
Partition problem decides whether a set of non-negative integers (from \mathbb{Z}) can be partitioned into triples that all have the same sum. The number of inputs (n) must be a multiple of three ($3m$ inputs). The sum of the inputs must be divisible by the number of multiples of three (the sum is divisible by m). Additionally, each and every input must be used in the solution exactly once.

More formally, the 3-Partition problem is described by authors Garey and Johnson in their book, *Computers and Intractability*, pg. 96 [11]:

Instance: A finite set A of $3m$ elements, a bound $B \in \mathbb{Z}$, and a “size” $s(a) \in \mathbb{Z}$ for each $a \in A$, such that each $s(a)$ satisfies $B/4 < s(a) < B/2$ and such that $\sum_{a \in A} s(a) = mB$.

Question: Can A be partitioned into m disjoint sets S_1, S_2, \ldots, S_m such that, for $1 \leq i \leq m$, $\sum_{a \in S_i} s(a) = B$?

As an example, consider the set $\{1, 2, 3, 4, 5, \ldots, 153\}$ which sums to 11,781. To solve 3-Partition for this set, fifty-one subsets ($3m = 153$) consisting of three inputs each summing to an amount equal to the total sum divided by m ($11,781 / 51 = 231$) need to be created.

There are many possible approaches to solving this problem. One way is to iterate through every possible combination. Each integer can be assigned to 51 subsets, so that there are $153!/ (51!3!)$ partitions to consider. This is a brute force algorithm. If we could compute a billion possible solutions per second, this problem would take many millennia to complete.

In this thesis, the algorithms created to solve 3-Partition are compared to the brute force algorithm. With the extreme slope of the exponential curve for the brute force algorithm, only small values of $3m$ can be visually observed. For larger values, the brute force search would not provide even a single solution within our lifetimes. This is true even with the advantage of trying only subsets of the inputs that are valid as part of a solution (and not all possible subsets).

It is often possible to apply some clever techniques to reduce the number of iterations of a brute force algorithm. The use of heuristics to guide the solution process and reduce work is one possibility. A heuristic approach that allows the algorithm to choose and discard subsets based
on the input characteristics of valid subsets of a solution instead of trying (exponential time) combinations can narrow down the search to a manageable space.

The goal of this thesis is to create a fast heuristic algorithm that finds an exact solution for certain instances of 3-Partition in polynomial time but in the worst case may not find a solution even though one exists. The current recursive algorithm has no known counter examples. We cannot confirm that a "no solution" result truly has no solution without the aid of a super-computer to try an exhaustive brute force search for problems that are limited to our observance space. Beyond a certain number of inputs, even a supercomputer would take years to confirm that no solution exists.

Comparison of the heuristic algorithm with a brute force search is impractical for more than a few inputs. Running a brute force search to enumerate the solutions for 27 inputs took 5½ days on an Intel i5 core 2.5 GHz laptop. The brute force algorithm from Reingold [27] runs in constant time per combination. By extrapolation, we can estimate that 33 inputs would take 3½ years to count all solutions. We shall revisit this particular problem later and demonstrate how long it takes with the newly created heuristic algorithm.
II. Research Objective

Strongly NP-complete problems are considered to be intractable for all ranges of inputs even if non-concise unary encoding is used and yet these problems come up in many practical applications. The goal of this research is to explore three algorithms we have implemented (including brute force) that can solve 3-Partition and examine the time complexity of each.

Solving 3-Partition for distinct inputs may help to solve other problems. 3-Partition is used to prove ‘strong’ NP-Completeness in the same way that Satisfiability is used to prove regular NP-Completeness. 3-Partition is reducible to other NP-complete problems in polynomial time. A usable range of inputs with solutions that can be reduced to solutions for other problems may provide helpful insights to researchers. New heuristics for solving other NP-complete problems may be discovered.

There are many practical applications. If a solution is found for a 3-Partition problem instance of two thousand or so inputs in less than six minutes, a supercomputer thousands of times faster could optimize a one billion transistor chip in a matter of weeks. The new faster chip could run the new algorithm and optimize a newer larger chip. Progress could continue until new limitations were encountered.

Scheduling jobs or server balancing could become easier. This means that access to the Internet and cloud computing could be faster. There are many other practical applications.
In principle, the 3-Partition Problem could be solved in exponential time by checking through all possible solutions, one by one as a brute force search. An algorithm that performs this method is all but useless in practice. We needed to find a way that did not involve trying combinations to find a solution because all known algorithms for combinatorial search are exponential. Identifying clever methods to bypass the process of combinatorial exhaustive search and using clues from the inputs in order to narrow down the search space is the practical objective of this research.

Our first heuristic algorithm used clues from the inputs and included a stack to make the search closer to exhaustive. Our second heuristic algorithm used clues from the inputs and accepts or rejects valid subsets recursively. The recursive version was rewritten as a tail recursion and converted to an iterative program for scalability and to avoid problems with Java heap size.

We shall provide a comparison of a brute force algorithm (which tries only valid subsets), the heuristic stack algorithm and the heuristic accept or reject recursive algorithm. Each program has been modified to stop when the first solution is found to make the comparisons valid. The time of execution is recorded after inputs are accepted and before the solution found is printed.
III. Definitions

3-Partition is a sequence of $3m$ nonnegative integers such that $A = \{a_1, a_2, \ldots, a_{3m}\}$ whose sum is equal to m times B. With 3-partition, there are m disjoint subsets of three elements each that exactly cover set A. Each of the m subsets of three elements must sum to B. The product of m and B must equal the sum of the elements of set A. For example, the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$ sums to 120 (m times B), a solution would have 5 subsets (m, since $3m=15$), and each subset would sum to 24 (B). One such solution for this input is $\{\{1, 8, 15\}, \{2, 10, 12\}, \{3, 7, 14\}, \{4, 9, 11\}, \{5, 6, 13\}\}$. Five subsets each sum to twenty-four and every input is covered (used).

Heuristic is a set of rules to guide decision making in an algorithm.

Strongly NP-Complete means that the problem is considered to be intractable even when the concise encoding requirement is dropped and unary encoding is used [11]. 3-Partition is considered to be strongly NP-Complete whenever m is three or greater (three or more groups of three element subsets in a solution).

Pseudo-Polynomial Time is exponential but growth of such a function is limited by the magnitude of the largest input, $t = O(mB)$ [11]. The size of B becomes a factor when the number of bits needed to encode the problem exceeds the number of inputs.
Subset Ranking is a term used for this research. To rank the subsets, count the overall occurrences of each unique element within all of the valid subsets. Each element in a subset then contributes that occurrence amount to the rank of an individual subset.

Lowest Frequency Element is a designation given to the input element(s) with the fewest occurrences that is (are) still available for building solution subsets from valid subsets that have not been eliminated or previously selected.

Multi-sets are subsets that contain duplicate input elements.

Subset States track the state of each subset during processing. A value of 0 is available, 1 is a primary subset, 2 is of interest, 3 is non-determined, 4 is eliminated, and 5 is finished.

Lexicographical Order is one of the criteria used for creating the sort order of the valid subsets. Subset states and rank are the other criteria.

Complex Ranking is a way to rank multi-sets so that a second or third occurrence of the same element within a subset does not have an undue influence on ranking. The number of first, second or third occurrences of duplicated inputs would instead be the contribution for that element to the ranking, rather than the total occurrences (also called positional ranking).

For example, the inputs \{0, 0, 1, 1, 2, 2, 2, 3\} would have the valid subsets \{ \{0 1 3\} \{0 2 2\} \{1 1 2\} \}. The resulting frequencies based on the supplied solution with complex rank are first 0's (two), first 1's (two), second 1's in a subset (one), first 2's (two), second 2's in a subset (one) and 3's (one). Complex ranks for each subset would be \{ \{0 1 3\}(two + two + one) \{0 2 2\}(two + two + one) \{1 1 2\}(two + one + two) \}. Without complex rank, the rank would be \{ \{0 1 3\}(two + three + one) \{0 2 2\}(two + three + three) \{1 1 2\}(three + three + three) \}.
Java BitSet is a vector of ones and zeroes that grows as needed. A BitSet is initially created at a default size depending on the system but grows dynamically as more bits are set. The BitSet is considered to be empty if it is composed entirely of zeroes. A single BitSet object holds the subset states stored for refreshing the states of the subset array when we pop the stack that we fashioned from a BitSet (see Appendix E and Appendix F). Four bits are enough to represent each state of a subset since that last bit must be a one to be easily found (there is a java BitSet method that detects the last bit set to 1). Available = 0001, primary = 0011, of interest = 0101, nondetermined = 0111, eliminated = 1001 and finished = 1011. 4m bits (in one BitSet object) can represent each block of subset states instead of m Java Integer objects pushed onto an object stack.
IV. Literature Review

There are few examples in the literature of solutions of instances of 3-Partition. Most of these are \(m=2 \) solutions, a special case that is not strongly NP-Complete. For example, the set \(\{2, 3, 4, 5, 7, 9\} \) resolves to a solution \(\{\{2, 4, 9\}, \{3, 5, 7\}\} \). When only two ‘buckets’ are used, the problem is equivalent to Partition which is considered by many to be tractable over a wide range of inputs [10, 13]. A thesis by Joosten [18] considers six buckets for instances of 3-Partition with a relaxed definition 3-Partition. Joosten’s relaxed definition allows inputs that are duplicates and zeroes.

It is important to know the worst case execution time of an algorithm compared to the number of inputs. Polynomial time is considered to be a reasonable amount of time for an algorithm. Software and algorithmic methods exist to aid this calculation [7, 17]. Time and space usage are the most critical statistics for evaluating an algorithm, and are related [22]. One solution may be to implement a Java BitSet as a stack [21]. In our implementation the state of each subset would be represented by four bits rather than a Java integer object therefore saving space (the BitSet is a single object of 4m bits instead of \(m^2 \) Java objects that would be stored for each potential solution). We have not implemented BitSet for our recursive lowest rank version.

A dynamic programming algorithm exists for a special case of Partition which runs in \(O(n^2) \) time [15]. If the number of bits of the largest input is bound, the number of blocks is less
than or equal to the number of data points, and the data space is one dimensional then the
dynamic programming algorithm executes in polynomial $O(n^2)$ time.

For the Partition problem, researchers have identified a phase transition [12, 24].
Partition is easy to solve until the number of bits needed to represent the inputs exceeds the
number of inputs. How a set is divided into subsets or dimensionality may be a factor when a
problem goes from P to NP in its complexity [24]. Partition could be considered to be in P until
the phase transition [13] which occurs when the number of bits to describe the problem exceeds
the number of bits to describe the inputs. One dares to speculate that Partition to 3-Partition (two
buckets to three buckets) may also be a phase transition to strongly NP-Complete.

Multi-sets and disjoint sets (no duplicates) of 3-Partition are both strongly NP-Complete.
Ramamoorthy explored this topic in his thesis, 3-Partition Remains Intractable for Distinct
Numbers, [26]. A paper by Gent, et al., states that heuristics should be used to approximate
results except for small inputs since 3-Partition is a number problem that is strongly NP-
Complete [12]. In Gent, no indication as to what constitutes a small or large input was given.

Many examples exist of proofs that 3-Partition is indeed intractable (strongly NP-
Complete) [8, 9, 10, 11, 26]. There have been no published solutions of larger instances (seven
or more buckets) of 3-Partition as of this writing. We have solutions for as many as 3333
buckets. Korf presented a 100 input problem solved for Partition [21] which is defined as an NP-
Complete problem after the phase transition. His algorithm provides an approximation. In
contrast, our algorithm tests for an exact solution. In addition, we are solving 3-Partition which
is strongly NP-Complete not simply NP-Complete.

Examples from related NP-Complete problems are cited in the references [3, 5, 19]. All
NP-Complete problems are reducible to one another by a polynomial transformation [19]. Many
of the transformations are well known. Joosten in his thesis solves his version of 3-Partition by transformations to Bin Packing, Graph Traversal, and 3-Dimensional Matching [18]. Parts of solutions to these problems could possibly be applied to 3-Partition.

Combinatorial algorithms are the exponential or brute force way to solve NP-Complete problems [11, 21, 27], CKK or Complete Karmarkar Karp is 2^n worst case time. Models of the time required for some ranges of inputs to combinatorial algorithms can be expressed as exponential or even factorial time. Pseudo-polynomial approximations can be calculated for discrete intervals [15]. Described in Jackson, et al., this generalization of the traveling salesman problem shows how complexity grows with the degree of the problem similar to the difference between Partition and 3-Partition.

A two-dimensional graph traversal algorithm for partitioning a plane uses rank to coordinate the topological connections [25]. Rank is an important factor for our recursive algorithm and is used to determine the order in which subsets are chosen for potential solutions.

An algorithm is described for finding frequent elements in streams, as in streaming media, and bags, as in offline collections, that works in two passes [20]. We seek the lowest frequency element and perhaps this idea could be adapted to serve in our algorithm.

A dynamic programming algorithm exists that solves a special case of 3-Partition [6]. The authors describe forced triples from which are drawn the solution subsets (we have a similar routine). This algorithm can find a solution if the subsets selected contain as a member the only element of its kind in the entire inputs list. This suggests that $m/3 – 1$ singleton elements must exist in the valid subsets before the solution can work. The last selection is deterministic.

A combination of pebbles and branching [5] and subsets of structured sets [23] may help us to optimize the non-deterministic portion of our algorithm. We suspect that this portion of our
algorithm can be better designed and is a topic for further research. Other topics for further research include a comment by Dyer, et al., stating that 3-Partition is strongly NP-Complete when $B = \Omega (m^4)$ and referencing Garey and Johnson, Computers and Intractability. B is the sum required for each subset in a 3-Partition solution. We could not find the original reference within Garey and Johnson. The derivation and rationale are of great interest to this thesis.

Johnson has practical advice on the experimental analysis of algorithms [17]. We will follow Johnson’s advice and report on all findings.

A new brute force unary bitwise encoding of 3-Partition [16] has been recently developed which in theory would be much faster than a decimal brute force search. We were unable to evaluate this algorithm since the required Appendix A was not included with the publication.
V. Importance of the Study

What is the most important problem in computer science? Solving any NP-Complete problem could lead to faster processor speed and server balancing (internet speed), faster and easier modeling of genetics and pharmaceuticals (combinatorial problems). Computational Complexity affects every one of these things and much more. Because NP-complete problems are reducible to one another, a solution for some instances of 3-Partition could help us solve problems many of which we have yet to conceive. If a constructive proof of $P = NP$ was found, there would be an explosion of discovery in every science that benefits from computers, especially computer science and mathematics.

Optimization problems such as logistics would become easy to solve. Computer programs could prove or disprove finite mathematical theorems. The advances in computer science and mathematics would push advances in any science that uses computers or math to solve complex combinations of variables. The magnitude of such a discovery cannot be overstated. It may be the most important known problem left undecided.

An algorithm that provided exact solutions for certain instances of 3-Partition, a strongly NP-Complete problem, could provide some of the benefits of $P = NP$.
VI. Research Design

i. Introduction

A daunting task when introducing an algorithm for an NP-Complete problem is proving the algorithm’s efficiency. In fact it may not provable one way or the other. Let us summarize the learned opinions of selected experts in the field for problems related to 3-Partition.

About P vs. NP, Cook [4] says:

“Most complexity theorists, including the author, believe that P ≠ NP.” … “Millions of smart people, including engineers and programmers, have tried hard for many years to find a provably efficient algorithm for one or more of the 1000 or so NP-Complete problems, but without success.”

If an efficient algorithm was found, Cook’s [4] comments are not understated:

"If P=NP is proved by exhibiting a truly feasible algorithm for an NP-Complete problem" ... "the practical consequences would be stunning."

Part of the problem in finding a “provably efficient algorithm” could be that the question itself ‘does P = NP?’ is not decidable. Aaronson [1] states:

“If P vs. NP were independent”… (and SATISFIABILITY was solved as polynomial) … “there would be such an algorithm, but it would be impossible to prove that it works.”

In addition, Aaronson says [1]:

“P ≠ NP is either true or false” … “But we may not be able to prove which way it goes, and we may not be able to prove that we can’t prove it.”

It is possible that if we find an algorithm with polynomial average case time we will be unable to prove that it always works. The algorithm may work efficiently in many cases but
worst-case time complexity may still be exponential. An algorithm that solves 3-Partition most of the time in an efficient average case time could realize some of the benefits of P = NP. This is one of the five possible worlds of P vs. NP called Heuristica described by Impagliazzo [14]:

"Heuristica is in some sense a paradoxical world. Here, there exist ‘hard’ instances of NP problems, but to ‘find’ such hard instances is in itself an intractable problem!"

Impagliazzo [14] goes on to say that:

"... Heuristica is basically equivalent to knowing a method of quickly solving almost all instances of one of the average-case complete problems ... and having a lower bound for the worst-case complexity of some NP-Complete problem."

Is there hope that Heuristica can be accomplished? In Garey and Johnson, Computers and Intractability, pg. 106 [11], the strong NP-Completeness result for MULTIPROCESSOR SCHEDULING where \(n \) is the number of tasks, \(m \) is the number of processors and \(L \) is the length of the longest task rules out a polynomial time solution in \(n, m \) and \(\log L \) (NP-Completeness) and in \(n, m \) and \(L \) (strong NP-Completeness) unless P = NP. However:

"Our subproblem results do not rule out an algorithm polynomial in \(m^n \) and \(\log L \)," (where \(n \) is fixed)

"and indeed exhaustive search algorithms having such a time can be designed." … “It leaves open the possibility of an algorithm polynomial in \((nL)^m \) (which would give a pseudo-polynomial time algorithm for each fixed value of \(m \)), and again such an algorithm can be shown to exist.”

Is it possible to improve upon the times known to be possible quoted above? In Garey and Johnson, Computers and Intractability, pg. 122 [11]:

"... it is sometimes possible to reduce substantially the worst case time complexity of exhaustive search merely by making a more clever choice of the objects over which the exhaustive search is performed."

In the case of our algorithms, we believe that the order of choice is most important.

The preceding statements demonstrate how difficult it is to address the P vs. NP question. The goal of our inquiry is less ambitious. We intend to compare our new heuristic algorithms for 3-Partition with our original algorithm and with a brute force algorithm that has been given the advantage of trying only valid subsets.
ii. Thesis Statement

A naïve brute force search that finds solutions to 3-Partition for a given instance of $3m$ inputs would consider *every possible subset* of three elements each, taken from the set of inputs, and then every grouping of m subsets from the list of every possible subset. A more efficient way would be to reduce the subsets considered to only those subsets that sum to the amount B required for 3-Partition. This is a more clever brute force search, but it still utilizes combinations which are exponential in nature.

We have found an approach that provides an alternative to relying on combinations. A recursive approach may help to avoid a naïve exhaustive search. Element frequency and subset rank are metadata contained within the valid subsets. For example: for inputs 1, 2, 3, 4, 5, 6, 7, 8, and 9 the valid subsets would be $\{1,5,9\}$ $\{1,6,8\}$ $\{2,4,9\}$ $\{2,5,8\}$ $\{2,6,7\}$ $\{3,4,8\}$ $\{3,5,7\}$ $\{4,5,6\}$. Within the valid subsets; 1 occurs twice, 2 occurs three times, 3 occurs twice, 4 occurs three times, 5 occurs four times, 6 occurs three times, 7 occurs twice, 8 occurs three times, and 9 occurs twice. To rank subsets, count occurrences of each element in the valid subsets. Each element then contributes that amount to the rank of an individual subset.

The ranks would be: $\{1,5,9\}(8)$ $\{1,6,8\}(8)$ $\{2,4,9\}(8)$ $\{2,5,8\}(10)$ $\{2,6,7\}(8)$ $\{3,4,8\}(8)$ $\{3,5,7\}(8)$ $\{4,5,6\}(10)$. Select solutions by highest rank first. If we choose $\{2,5,8\}$, we must eliminate $\{1,5,9\}$ $\{1,6,8\}$ $\{2,4,9\}$ $\{2,5,8\}$ $\{2,6,7\}$ $\{3,4,8\}$ $\{3,5,7\}$ $\{4,5,6\}$ or all other valid subsets because 3-Partition requires that each input is used exactly once in a solution.

Select subsets by lowest rank. If $\{1,5,9\}$ is selected we must eliminate $\{1,5,9\}$ $\{1,6,8\}$ $\{2,4,9\}$ $\{2,5,8\}$ $\{2,6,7\}$ $\{3,4,8\}$ $\{3,5,7\}$ $\{4,5,6\}$ which leaves a solution $\{1,5,9\}$ $\{2,6,7\}$ $\{3,4,8\}$. The order of selection is important because we must eliminate any other subsets that contain elements from a subset we select. In addition, selecting subsets with low frequency elements
early in the process makes it less likely that subsequent choices will eliminate an element that must be included in a solution. One dares to postulate that if we always knew the correct order in which to select valid subsets, we would always find a solution if one exists.

Assume that the order of subset selection has no effect on the general problem of solving an instance of 3-Partition without using brute force combinations. A null hypothesis, using this assumption could be stated as:

\[H_0 = \text{subsets may be selected in any order when selecting or eliminating subsets when finding a recursive cover solution for 3-Partition.} \]

If \(H_0 \) is unsupported, then our assumption is incorrect. In fact \(H_0 \) is not supported, and therefore the order of selection is important. If we wish to avoid an exponential time brute force search, we must instead make a \textit{clever orderly} search.

There exists solvers for 3-Partition that solve 3-Partition in less than exponential time for special cases. One of these solvers was proposed by Dyer, et al., [6]. This algorithm runs in \(n^2 \) time and finds solutions if enough valid subsets, (stated as forced triples with one of the input elements with a frequency equal to one) exist to construct a solution. Our algorithm is also a special case but has succeeded without relying on finding subsets containing an input element with a frequency of one and is broader in that sense.

iii. Methods:

Each method of reducing all possible subsets of the inputs systematically to produce a solution for a given instance of 3-Partition will be explained in this section.

1. The Valid Subsets Reduction

Solving the subproblem of which valid subsets can be accepted as part of a solution is an important step. Subtract the smallest element and the largest element from B(the sum required for each subset) to obtain a remainder. Then search the sorted elements in decreasing order until
a subscript with an element of a 'size' equal to the remainder value is found or an element with a 'size' less than the remainder is found. This process continues until \(3m-1\) operations have occurred. We increase the smallest subscript by one. The remainder subscript is decreased until next remainder value is found. Each subsequent pass has one less operation, \(3m-2\), \(3m-3\), etc. until \(3m-\frac{3m}{2}\) operations are performed. The time function for the number of operations performed by this method is \(t(m) = 3^\frac{3}{8}m^2 - 1^{\frac{1}{2}}m + \frac{1}{8}\) resulting in \(O(m^2)\) time. We use \(3m\) here to represent the \(n\) inputs of 3-partition. Appendix A has detailed descriptions of the definition of valid subsets, the derivation of valid subsets and the derivation of the time function for valid subsets.

2. Lowest Ranked Subset

Derive valid subsets from the input elements. Collect element frequency and calculate the subset rank. Sort the valid subsets by subset state, by rank then by lexicographical order. Select the first subset from the list of valid subsets. Remove the elements of the selected subset from the input list (by changing their state). Save the selected subset. Repeat the process until a solution is found or less than \(m\) subsets are available making a solution no longer possible.

3. Orderly Search

There will be \(m\) iterations of the Lowest Ranked Subset process. The first subset is always selected at each iteration. If no solution is found, the very first subset tried is retired and we try again with the next lowest ranked subset.

iv. Implementation

The Valid Subset Reduction is processed first. From the valid subsets, select the lowest ranked subset. The orderly search begins by marking the very first subset selected as primary.

There is often not enough information available to always solve 3-Partition in a single
pass \((m\) recursions\). Counter-examples have been found. That is why there needs to be an orderly search which we accomplish by retiring the primary subset. The clever selection of the search objects has made it possible to solve certain instances of 3-Partition, currently up to 9999 consecutive inputs as of this writing.

The elements within the valid subsets are not likely to be evenly distributed. Each subset can be ranked by the number of elements it has in common within itself and within the remainder of the set of available subsets. The rank can be used to determine the order in which subsets are chosen while trying to build a 3-Partition solution. One improvement that will be added at a future date is handling of multi-sets and zeroes as inputs.
VII. Conclusions and Discussion

The Brute Force Search

Until now except for narrow special cases, no algorithm existed for solving 3-Partition except in exponential time. Our algorithm also solves a special case of 3-Partition. It has been tested most often with consecutive inputs \{1, 2, 3, 4, \ldots 3m\} and also with random inputs.

The following table describes the brute force algorithm:

<table>
<thead>
<tr>
<th>number of inputs</th>
<th>solutions found</th>
<th>solution subsets (m)</th>
<th>valid subsets(v)</th>
<th>number of combinations (v choose m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>56</td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>5</td>
<td>25</td>
<td>53,130</td>
</tr>
<tr>
<td>21</td>
<td>84</td>
<td>7</td>
<td>50</td>
<td>99,884,400</td>
</tr>
<tr>
<td>27</td>
<td>1296</td>
<td>9</td>
<td>85</td>
<td>411,731,930,610</td>
</tr>
</tbody>
</table>

The jump in execution time for finding the first solution from 21 inputs to 27 inputs was from 9.35 seconds to 10 hours, 12 minutes and 58 seconds. We did not attempt 33 inputs.

Perhaps this is what Dyer meant when stating that 3-Partition is strongly NP-Complete when \(B = \Omega (m^4) \). One could infer that 411 billion combinations imply a strongly NP-Complete problem. The brute force algorithm from Reingold, pg. 181 [27] finds combinations in constant time. We can extrapolate that 33 inputs would require years \((128 \text{ choose } 11) \). Clearly, even with the advantage of trying only valid subsets, the brute force approach is unacceptable even though it is always guaranteed to (some day) find a solution if one exists.
The Orderly Search

The orderly search sorts a space of $9/8m^2 - 3/4m + 3/8$ valid subsets up to m times. All other calculations are m^2 in time or less. Worst case time for the inner loop in terms of m where m is the number of solution subsets desired for 3-Partition is $t(m) = O(m * (m^2 \log m^2))$. Time $t(m)$ resolves to a worst case time of $O(m^3 \log m)$. We seldom have had to execute m recursions m times to find a solution. Retirement of the primary subset means that the $m^3 \log m$ process could occur up to $m^2 - m - 1$ times for a total worst case time of $O(m^5 \log m)$.

The program listed in Appendix C is proof by construction that recursive selection of the lowest ranked subset is an efficient (if not complete) heuristic algorithm for solving 3-Partition. Additional evidence is the very large solution for 2523 consecutive inputs listed in Appendix G.

The orderly search is not exhaustive. The program in Appendix C was first designed to solve 3-Partition in a single pass (m recursions). However, a small counter example was found that failed: {2, 3, 6, 8, 10, 14, 16, 18, 19, 21, 22, 24, 27, 30, 31, 32, 34, 36, 37, 38, 41}. This counter example also proved that the algorithm is not greedy. Simply choosing the lowest ranked subset in lexicographical order recursively does not guarantee a solution will be found if one exists. Several large counter examples were also found.

The addition of a second loop that refreshes the status and rank of all but the very first (primary) subset selected for a solution is exhaustive in checking the primary subset only. This addition allowed the algorithm to solve all currently known counter examples.

An earlier and much slower (exponential time, but faster than brute force) version of the program based on element frequency found solutions including a solution for 2523 inputs which let us know that certain solutions did indeed exist.

The orderly search algorithm is not an estimate, it finds an exact solution. The algorithm
is set up for disjoint sets, not multi-sets. It is not a complete algorithm in that we cannot prove that a solution will always be found if one exists.

The largest published solution found as of this writing was 6 subsets (18 inputs) by Joosten [18]. 2523 inputs were solved by our algorithm in just over six minutes. The 2523 limit was close to the limit for the earlier stack version of the algorithm. More recently 9999 inputs have been solved in just over 15 days.

<table>
<thead>
<tr>
<th>inputs</th>
<th>brute force</th>
<th>stack</th>
<th>recursion</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0.006</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>15</td>
<td>0.095</td>
<td>0.010</td>
<td>0.007</td>
</tr>
<tr>
<td>21</td>
<td>9.348</td>
<td>0.033</td>
<td>0.010</td>
</tr>
<tr>
<td>27</td>
<td>36778.314</td>
<td>0.050</td>
<td>0.016</td>
</tr>
<tr>
<td>33</td>
<td>-</td>
<td>0.078</td>
<td>0.025</td>
</tr>
<tr>
<td>39</td>
<td>-</td>
<td>0.090</td>
<td>0.032</td>
</tr>
<tr>
<td>45</td>
<td>-</td>
<td>0.138</td>
<td>0.042</td>
</tr>
<tr>
<td>51</td>
<td>-</td>
<td>0.127</td>
<td>0.039</td>
</tr>
<tr>
<td>57</td>
<td>-</td>
<td>0.258</td>
<td>0.046</td>
</tr>
<tr>
<td>63</td>
<td>-</td>
<td>0.133</td>
<td>0.060</td>
</tr>
<tr>
<td>69</td>
<td>-</td>
<td>0.177</td>
<td>0.052</td>
</tr>
<tr>
<td>75</td>
<td>-</td>
<td>0.172</td>
<td>0.052</td>
</tr>
<tr>
<td>81</td>
<td>-</td>
<td>0.402</td>
<td>0.153</td>
</tr>
<tr>
<td>87</td>
<td>-</td>
<td>0.201</td>
<td>0.133</td>
</tr>
<tr>
<td>93</td>
<td>-</td>
<td>0.609</td>
<td>0.308</td>
</tr>
<tr>
<td>99</td>
<td>-</td>
<td>0.246</td>
<td>0.087</td>
</tr>
<tr>
<td>105</td>
<td>-</td>
<td>1.758*</td>
<td>0.303</td>
</tr>
<tr>
<td>111</td>
<td>-</td>
<td>0.241</td>
<td>0.170</td>
</tr>
<tr>
<td>117</td>
<td>-</td>
<td>2.822*</td>
<td>0.181</td>
</tr>
<tr>
<td>123</td>
<td>-</td>
<td>0.284</td>
<td>0.356</td>
</tr>
<tr>
<td>129</td>
<td>-</td>
<td>4.051</td>
<td>0.125</td>
</tr>
<tr>
<td>135</td>
<td>-</td>
<td>0.333</td>
<td>0.201</td>
</tr>
<tr>
<td>141</td>
<td>-</td>
<td>6.991*</td>
<td>0.161</td>
</tr>
<tr>
<td>147</td>
<td>-</td>
<td>0.386</td>
<td>0.434</td>
</tr>
<tr>
<td>153</td>
<td>-</td>
<td>3.801</td>
<td>0.362</td>
</tr>
</tbody>
</table>

Table 1 is a comparison of execution times for the brute force, the stack and the recursion algorithms we tried. The table is expressed in terms of execution time which is known to be inexact because of processes that run in the background of the operating system. The asterisked
occurrences for the stack algorithm found no solution even though one exists. We believe one of our lists in the stack algorithm is missing the last occurrence. After implementation of the recursive algorithm, debugging of the stack algorithm was abandoned. The times in the table above were run with windows update, virus scans and other processes set to manual. The command prompt console executed at fifty percent of CPU. It is unlikely that the three to four percent of CPU taken by operating system processes had much of an impact on the times. The times quoted are the median time of three runs excepting the time for brute force 27 inputs which was run only once.

Figure 1: Graph of Performance of 3-Partition Algorithms

Figure 1 displays a graphical view of the various algorithms' performance. The stack algorithm times are an improvement but an exponential trend is clearly shown. Some occurrences show increased stack use while others do not. We speculate that this is related to the number of subsets tied for the same rank. The recursive algorithm times are shown to be superior to either of the other algorithms, for what we now call small inputs.
There is empirical evidence for an average case time of $O(m^2)$ for the recursive accept and reject algorithm. The execution time for 999 inputs was 49.627 seconds. For 2523 inputs the execution time was 6 minutes and 10.38 seconds. 2523 inputs is approximately 2.5 times the size of 999 inputs; 2.5 squared equals 6.25; 6.25 times 50 seconds is 312.5 seconds. This is approximately the time expected empirically for our proposed average case time.

We call our new approach the **Clever Choice Algorithm**.

Future Research

Other counter examples of inputs that have solutions that are not solved by this algorithm might found. In fact, we hope that this is the case. Each counter example that is found allows us to test a new interpretation of element frequency and/or subset rank information to determine the best use of that information. For now, we have a polynomial time algorithm that solves 3-Partition for certain inputs. Various inputs up to 9999 have been computationally tested including random inputs (from program in Appendix D) and have provided solutions in polynomial time. Up to this writing, solutions to Partition problems of any kind with inputs no greater than 100 have been published. We have increased the ceiling.

The next improvement to the algorithm may be to add a stack and push the status of subsets when there is a tie based on information that we are using to select our subsets. We hope that this is not the case. It would be better to discover the best criteria for selecting subsets in a deterministic optimal order. Adding a stack is a way to accommodate non-determinism which is exponential in nature.

There are two known types of information that are useful in selecting subsets; element frequency and subset rank. They are closely related, like waves and particles in physics. If the frequency of an element in the valid subsets is 'one', we must select that subset because each
element must be used in a solution exactly once. If we select subsets in order of low rank, we are
more likely to find a solution than by selecting subsets in order of high rank. This was the key
observation (epiphany) that led to this algorithm.

If you wish to implement and test the implementation of the recursive algorithm, the
source code is available in Appendix C. A user's manual can be found to help with executing the
program in Appendix B. For those that wish to test random input sets, Appendix D provides a
Java program to produce such inputs.

Future research will involve further evaluation of the orderly search algorithm by element
frequency and/or by low rank. Subsets that are tied for the same criteria as the subset that would
have been selected are instead chosen using the more subtle nuances of these criteria. The
algorithm will be adjusted to accommodate multi-set and zeroes as inputs which may allow
solutions for a broader range of inputs.

It will be interesting to see what the time complexity is for the future complete exhaustive
version that will always find a solution.
VIII. References

Appendix A. Valid Subsets

Define the set of input elements
let set $A = \{a_1, a_2, \ldots, a_{3m}\}$
\[\forall a \text{ of a "size" } s(a) \in A: s(a_1) < s(a_2) < \ldots < s(a_{3m}) \]
\[\forall a \in A: s(a) \in \mathbb{Z}^+ \]
\[m, B \in \mathbb{Z}^+ \]
\[\sum_{a \in A} s(a) = mB \]

Define the set of valid subsets of set A
let set $V = \{A_1, A_2, \ldots, A_t\}$

Define lowest frequency element and lowest ranked subset in lexicographical order
let set $L_{ijk} = \{a_i, a_j, a_k\}: L_{ijk} \in V, L_{ijk} \subseteq A$
\[a_{low} = (\min |\text{count } s(a_i): a_i \in V|) \land (\min |\text{size } s(a_i): a_i \in A|) \]
\[L_{ijk}: (a_i = a_{low} \lor a_j = a_{low} \lor a_k = a_{low}) \land (\min |\text{count } s(a_i) + \text{count } s(a_j) + \text{count } s(a_k)| \text{ in lexicographical order}) \]

Define a set of solution subsets from set A
iff \(\exists S \) then let set $S_n = \{A_1, A_2, \ldots, A_m\}$
\[n \], the number of solutions
\[m, n \in \mathbb{Z}^+ \]
\[\forall A_i, A_j \in A: A_i \cap A_j = \emptyset \]
\[\forall A_i \in A = [3] \]
\[\forall A_i \in V: \sum_{a \in A_i} s(a) = mB \]

Valid subsets are analogous to the n integer partitions of B. This is not the same as the
strongly NP-Complete 3-Partition problem. The n integer partition of 7, Reingold, pg. 192 [27] is
\[\{1,1,1,1,1,1,1\}, \{2,1,1,1,1\}, \{2,2,1,1,1\}, \{2,2,2,1\}, \{3,1,1,1,1\}, \{3,2,1,1\}, \{3,2,2\}, \{3,3,1\}, \{4,1,1,1\}, \{4,2,1\}, \{4,3\}, \{5,1,1\}, \{5,2\}, \{6,1\}, \{7\} \]

The $n = 3$ integer partition of 7 is \{3,2,2\}, \{3,3,1\}, \{4,2,1\}, \{5,1,1\}. It is the integers that
add to 7 that have exactly three members. For the formal definition of 3-Partition, only those
that are disjoint (no duplicates) would be considered, \{4,2,1\}. An enumeration of 3-Partition
solutions might involve an adaptation of the \(n=3 \) integer partitions of \(B \).

Instead of using integer partitions and reducing the selections to those we desire, we iterate from largest input in decreasing order in an inner loop and increment from smallest input in increasing order in an outer loop and stop when smallest, remainder and largest are within 1 or less of each other. See Appendix C, 3-Partition Source Code and find 'Derive valid subsets' near the bottom of page 36 of this thesis for source code. For valid subsets time, if \(3m = \) the number of inputs, we would have steps taking a time of:

\[
t(m) = 3m-1 + 3m-2 + \ldots + 3m^{\frac{3m}{2}} \quad (\frac{3m}{2} \text{ is an integer division, dropping the decimal})
\]

\[
m=3, \quad 8+7+6+5 = 26 \text{ total operations}
\]
\[
m=5, \quad 14+13+12+11+10+9+8 = 77 \text{ total operations}
\]
\[
m=7, \quad 20+19+18+17+16+15+14+13+12+11 = 155 \text{ total operations}
\]
\[
m=9, \quad 26+25+24+23+22+21+20+19+18+17+16+15+14 = 260 \text{ total operations}
\]

From quadratic regression at http://science.kennesaw.edu/~plaval/applets/QRegression.html, with \(m \) and total operations entered as inputs, \(t(m) = 3^3/m^2 - 1^{1/2}m + 1/8 \). The valid subsets routine is accomplished in polynomial quadratic time.
Appendix B. User Manual for Recursion Algorithm

Open a command prompt:
Click Windows start button, click All Programs, click Accessories, open Command Prompt

To Compile and run a program:
javac ThreePartition.java compiles
java ThreePartition runs

The Path for Java:
If you get an error message that javac is not recognized, update your Path
go to Control Panel, click System, click Advanced System Settings, click Environment Variables
under System Variables select and edit Path (take great care, cancel if in doubt)
;C:\Program Files\Java\jdk1.7.0_25\bin if you do not see something like this, install java
;C:\users\yourusername\desktop add a path to your desktop (Win 7)
Seek help if you are not fairly comfortable with the instructions

Pasting inputs (you can also manually input data)
The menu is the small symbol in front of "Command Prompt" at the top
select Edit then Paste to input to a running program with input you have selected and copied

Redirecting an input file into the program
java ThreePartition < input.txt accepts input.txt as input

More memory and buffers for the console
The menu is the small symbol in front of "Command Prompt" at the top of the window
select Command Prompt Properties then Buffer Size then Number of Buffers
adjust until you retain all program output, the solutions can overrun the default buffer size

To add additional java JVM memory
type systeminfo on the command line to find available physical memory
use up to half of the available physical memory, example 4000m = 4g so set parameters to 2g
java -Xmx:2g -Xms:2g ThreePartition runs with more memory
Appendix C. 3-Partition Source Code
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.InputMismatchException;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.Scanner;
public class ThreePartition {
 public static void main(String[] args) {
 // Initial setup
 boolean solutionFound = false;
 int solve = 0;
 int inputDone = 0;
 int oldSize = 0;
 int oldSolve = 0;
 int availableSubsets = 0;
 int elementSum = 0; // Sum of inputs
 int m = 0; // How many multiples of three elements
 int B = 0; // Sum divided by m, "Bound" of subset size
 long startTime = 0;
 Scanner input = new Scanner(System.in);
 ArrayList<Integer> rawInputs = new ArrayList<Integer>();
 // Input rules display
 System.out.println("Enter nonnegative elements in multiples of three (3m)\n");
 System.out.println("Elements must add to a multiple of the above multiple (m)\n");
 System.out.println("For example, if fifteen elements are entered that\n");
 System.out.println("is equal to five multiples of three, therefore the sum\n");
 System.out.println("must be a multiple of five...\n");
 System.out.println("Or, if eighteen elements are entered that is equal to\n");
 System.out.println("six multiples of three, therefore the sum must be a\n");
 System.out.println("multiple of six...\n");
 System.out.println("Enter the elements separated by a space\n");
 System.out.println("Enter -1 to end\n");
 System.out.println("For example 1 2 3 4 5 6 7 8 9 -1\n");
 // Accept 3m inputs
 while (inputDone != -1) {
 // user input to array
 try {
 rawInputs.add(new Integer(input.nextInt()));
 } catch (InputMismatchException e) {
 System.out.format("Error: Invalid character was input! \n");
 System.out.print("Exiting... \n");
 System.exit(0);
 } catch (NoSuchElementException e) {
 // user entered CTRL C
 System.exit(0);
 }
 // Sum of elements except -1 here (only execute when -1 entered)
 elementSum = 0;
 }
 }
}
if (rawInputs.contains(new Integer(-1))) {
 if ((rawInputs.size() != 1) && (rawInputs.size() % 3 == 1)) {
 for (int i = 0; i < rawInputs.size() - 1; i++) {
 elementSum += rawInputs.get(i); // Sum inputs
 }
 // Subtract one for the -1 added when quitting
 m = (rawInputs.size() - 1) / 3;
 B = elementSum / m;
 }
 if (rawInputs.size() == 1) {
 System.out.print("Exiting...\n");
 System.exit(0);
 } else if (((rawInputs.size() % 3) == 1)
 && (elementSum % m) == 0)) {
 inputDone = -1;
 rawInputs.remove(new Integer(-1));
 // Put 0 in row 0 which is not used
 rawInputs.add(0, new Integer(0));
 } else if ((rawInputs.size() % 3) != 1) {
 rawInputs.remove(new Integer(-1));
 System.out.println("ERROR: Enter inputs in multiples of 3\n");
 System.out.println("Continue data entry or CTRL C\n");
 System.out.format("\n");
 } else if ((elementSum % m) != 0) {
 rawInputs.remove(new Integer(-1));
 System.out.println("ERROR: Sum (" + elementSum
 + ") not a multiple of " + m);
 System.out.println("Continue data entry or CTRL C\n");
 System.out.format("\n");
 }
}
}
input.close();

// time how long it takes to find a solution
startTime = System.nanoTime();
// Now we know the value of m
Integer[][] solution = new Integer[m + 1][5];
// Sort raw inputs
Collections.sort(rawInputs);

Map<Integer, Integer> inputsHash = new LinkedHashSet<Integer, Integer>();
Integer[] setA = new Integer[rawInputs.size()];
setA = rawInputs.toArray(setA);
ArrayList<Integer> matchSet = new ArrayList<Integer>();

// Initialize the LinkedHashSet for inputs and frequencies
for (int i = 1; i < setA.length; i++) {
 int temp = 0;
 inputsHash.put(setA[i], temp);
}

// Method 1 The Valid Subsets Reduction - begin
matchSet.add(0, new Integer(0)); // The zero occurrence, not used
int diff = 0;
int hsub = setA.length - 1;
int msub = hsub - 1;
int lsub = 1;
int old_setA_lrgSub = setA[hsub];
int old_setA_smlSub = setA[lsub];
while (hsub > msub) {
 lsub = 1;
 msub = hsub - 1;
 for (int i = hsub - 1; i > lsub - 1; i--) {
 if (setA[i] == diff) {
 msub = i;
 break;
 }
 }
 if (setA[i] < diff) {
 break;
 }
}
while (lsub < msub) {
 for (int j = msub; j > lsub; j--) {
 if (setA[j] == diff) {
 int temp;
 msub = j;
 try {
 matchSet.add(new Integer(setA[lsub]));
 temp = inputsHash.get(setA[lsub]);
 temp++;
 inputsHash.put(setA[lsub], temp);
 matchSet.add(new Integer(setA[msub]));
 temp = inputsHash.get(setA[msub]);
 temp++;
 inputsHash.put(setA[msub], temp);
 matchSet.add(new Integer(setA[hsub]));
 temp = inputsHash.get(setA[hsub]);
 temp++;
 inputsHash.put(setA[hsub], temp);
 } catch (OutOfMemoryError e) {
 System.out.format("Too many subsets!\n");
 System.out.print("Exiting...\n");
 System.exit(0);
 }
 break;
 }
 }
 old_setA_smlSub = setA[lsub];
 while ((lsub < hsub) && (old_setA_smlSub == setA[lsub])) {
 lsub++;
 }
}
old_setA_lrgSub = setA[hsub];
while (old_setA_lrgSub == setA[hsub]) {
 hsub--;
}
} // Method 1 The Valid Subsets Reduction - end
// Build subset array, update subset rank
if (matchSet.size() == 1) {
 System.out.format("0 solutions were found. \n");
 System.exit(0);
}
int sub = 0;
int subscript = 0;
Integer[][] subset = new Integer[(matchSet.size() / 3) + 1][5];
subset[0][4] = new Integer(0);
subset[0][3] = new Integer(0);
subset[0][2] = new Integer(0);
subset[0][1] = new Integer(0);
subset[0][0] = new Integer(0);
while (sub < (matchSet.size() - 1)) {
 subscript++;
 subset[subscript][4] = new Integer(0);
 subset[subscript][3] = matchSet.get(sub + 3);
 subset[subscript][2] = matchSet.get(sub + 2);
 subset[subscript][1] = matchSet.get(sub + 1);
 subset[subscript][0] = inputsHash.get(matchSet.get(sub + 3))
 + inputsHash.get(matchSet.get(sub + 2))
 + inputsHash.get(matchSet.get(sub + 1));
 sub += 3;
}
matchSet.clear();
// Method 3 Orderly Search - begin
availableSubsets = 1999999999;
// ************************
// ** Outer program loop **
// ************************
while ((availableSubsets > m - 1) && (solutionFound == false)) {
 solve = 0;
 // Method 2 Lowest Ranked Subset - begin
 // ************************
 // ** Main Program Loop **
 // ************************
 while ((rawInputs.size() > 1) && (rawInputs.size() != oldSize)) {
 solve++;
 // Java comparison sort columns 0 1 2 of subsets, O(n log n)
 Arrays.sort(subset, new Comparator<Integer[]>() {
 public int compare(Integer[] o1, Integer[] o2) {
 Integer[] row1 = o1;
 Integer[] row2 = o2;
 if (row2[0] == null || row1[0] == null) {
 return 0;
 } else if ((row1[4].equals(row2[4])) &&
 (row1[0].equals(row2[0])) &&
 (row1[1].equals(row2[1]))) {
 return row1[2].compareTo(row2[2]);
 } else if ((row1[4].equals(row2[4])) ||
 (row1[0].equals(row2[0])) ||
 (row1[1].equals(row2[1]))
)
 }
 });
 }
}
(row1[0].equals(row2[0]))) {
 return row1[1].compareTo(row2[1]);
} else if ((row1[4].equals(row2[4]))) {
 return row1[0].compareTo(row2[0]);
} else {
 return row1[4].compareTo(row2[4]);
}
}

if (subset[1][4].equals(0)) {
 oldSolve = solve;
}

// Initialize frequencies
int initialize = 0;
@interface SuppressWarnings("rawtypes")
Iterator iter = inputsHash.entrySet().iterator();
while (iter.hasNext()) {
 @interface SuppressWarnings("rawtypes")
 Map.Entry pairs = (Map.Entry) iter.next();
 int inputValue = (Integer) pairs.getKey();
 int frequency = (Integer) pairs.getValue();
 frequency = initialize;
 inputsHash.put(inputValue, frequency);
}

for (int u = 1; u < subset.length; u++) {
 // Set status of subsets with elements from selected subset
 if ((subset[u][4].equals(0)) &&
 ((subset[u][1].equals(subset[1][1])) ||
 (subset[u][1].equals(subset[1][2])) ||
 (subset[u][1].equals(subset[1][3])) ||
 (subset[u][2].equals(subset[1][1])) ||
 (subset[u][2].equals(subset[1][2])) ||
 (subset[u][2].equals(subset[1][3])) ||
 (subset[u][3].equals(subset[1][1])) ||
 (subset[u][3].equals(subset[1][2])) ||
 (subset[u][3].equals(subset[1][3])))) {
 // Different statuses set for future bitset stack
 if ((u == 1) && (solve == 1)) {
 subset[u][4] = new Integer(1); // Primary
 } else if ((u == 1) &&
 (subset[u][0].equals(subset[u+1][0])) &&
 (!(subset[u][0].equals(3)))) {
 subset[u][4] = new Integer(3); // Nondeterm
 } else if (u == 1) {
 subset[u][4] = new Integer(2); // Selected
 } else {
 subset[u][4] = new Integer(4); // Eliminated
 }
 }
}

// Reset the frequencies of unused subsets
int temp = 0;
if ((subset[u][4].equals(0))) { // Status 0 = unused
 // Increment each element frequency
 temp = inputsHash.get(subset[u][1]);
 temp++;
 inputsHash.put(subset[u][1], temp);
 temp = inputsHash.get(subset[u][2]);
 temp++;
 inputsHash.put(subset[u][2], temp);
 temp = inputsHash.get(subset[u][3]);
 temp++;
 inputsHash.put(subset[u][3], temp);
}

for (int v = 1; v < subset.length; v++) {
 // Update subset ranks
 if (subset[v][4] == 0) {
 subset[v][0] = new Integer(inputsHash.get(subset[v][1]) +
 inputsHash.get(subset[v][2]) +
 inputsHash.get(subset[v][3]));
 }
}

// Add valid subset to solution
if (oldSolve == solve) {
 solution[solve][1] = subset[1][1];
 solution[solve][2] = subset[1][2];
 solution[solve][3] = subset[1][3];
}
oldSize = rawInputs.size();
// Delete low ranked subset from rawInputs/inputsHash, loop control
if (oldSolve == solve) {
 rawInputs.remove(new Integer(solution[solve][1]));
 rawInputs.remove(new Integer(solution[solve][2]));
 rawInputs.remove(new Integer(solution[solve][3]));
 inputsHash.remove(solution[solve][1]);
 inputsHash.remove(solution[solve][2]);
 inputsHash.remove(solution[solve][3]);
}

} // End of main loop here
// Method 2 Lowest Ranked Subset - end
// Print solution or not found message
if (rawInputs.size() == oldSize) {
 // Do nothing
} else {
 System.out.format("solution = \n");
 solutionFound = true;
 for (int f = 1; f < m + 1; f++) {
 System.out.format(" %d %d %d ", solution[f][1],
 solution[f][2], solution[f][3]);
 if (f % 7 == 0) {
 System.out.println();
 }
 }
}
System.out.format("\n");
}
System.out.format("\n");

// Rebuild initial inputsHash and rawInputs
for (int i = 1; i < setA.length; i++) {
 int temp = 0;
 inputsHash.put(setA[i], temp);
 if (!rawInputs.contains(new Integer(setA[i]))) {
 rawInputs.add(new Integer(setA[i]));
 }
}

// Rebuild subset status to available
availableSubsets = 0;
for (int u = 1; u < subset.length; u++) {
 if (!(subset[u][4].equals(1))) { // Not the primary subsets
 subset[u][4] = new Integer(0); // Available
 availableSubsets++;
 }
 int temp = 0;
 if ((subset[u][4].equals(0))) { // Available
 temp = inputsHash.get(subset[u][1]);
 temp++;
 inputsHash.put(subset[u][1], temp);
 temp = inputsHash.get(subset[u][2]);
 temp++;
 inputsHash.put(subset[u][2], temp);
 temp = inputsHash.get(subset[u][3]);
 temp++;
 inputsHash.put(subset[u][3], temp);
 }
}

// Rebuild subset rank
for (int v = 1; v < subset.length; v++) {
 subset[v][0] = new Integer(
 inputsHash.get(subset[v][1]) +
 inputsHash.get(subset[v][2]) +
 inputsHash.get(subset[v][3]));
}

} // End of outer loop here

// Method 3 Orderly Search - end
double endTime = ((double) System.nanoTime() - (double) startTime) / 1000000000;
System.out.format("results found in %.3f seconds.\n", endTime);
Appendix D. Random Inputs Source Code

```java
import java.util.ArrayList;
import java.util.Random;
public class RandomInputs {
    public static void main(String[] args) {
        ArrayList<Integer> inputList = new ArrayList<Integer>();
        Random rand1 = new Random();
        rand1.setSeed(System.currentTimeMillis());
        // Generate a random number of buckets from 3 to 7
        int randBuckets = rand1.nextInt(4) + 3;  // Update to change range of m (buckets)
        Random rand2 = new Random();
        rand2.setSeed(System.currentTimeMillis());
        int inputSum = 0;
        int compareSum = 0;
        int m = 0;
        int B = 0;
        boolean valid3P = false;
        while (true) {
            // Generate a number from 1 to 42
            int randNum = rand2.nextInt(41) + 1;  // Update to change range of inputs
            // Allow only disjoint inputs
            if (inputList.contains(randNum)) {
                continue;
            } else {
                inputSum += randNum;
                inputList.add(randNum);
                m = inputList.size() / 3;
                if (m > 0) {
                    B = inputSum / m;
                }
                compareSum = m * B;
                // Check for 3m inputs, divisible by m
                valid3P = false;
                if ( ((inputList.size() % 3) == 0) && (inputSum == compareSum)) {
                    valid3P = true;
                }
            }
            if ((valid3P == true) && (m >= randBuckets) && ((m % 2) == 1)) {
                System.out.format("m = %d\n", m);
                for (int j=0;j<inputList.size();j++) {
                    System.out.format("%d ", inputList.get(j));
                }
                System.out.format("-1\n");
                break;
            }
            if ((inputList.size() > (4 * randBuckets)) == true) {
                System.out.println("3P input list not found, please try again.");
                break;
            }
        }
    }
}
```
Appendix E. BitSet Stack Implementation

```java
import java.util.BitSet;

public class BitSetStack extends BitSet {
    public BitSetStack() {
    }

    public void pushbit(int index) {
        this.set(index);
    }

    public void pushbit(int index, boolean v) {
        this.set(index, v);
    }

    public boolean popbit(int index) {
        boolean b = this.peekbit(index);
        this.clear(index);
        return b;
    }

    public boolean peekbit(int index) {
        return this.get(index);
    }

    public boolean emptybits() {
        return this.isEmpty();
    }

    public int lastindex() {
        int i = this.length() - 1;
        if (i > -1) {
            return i;
        } else {
            return 0;
        }
    }
}
```

private static final long serialVersionUID = 192L;
```
Appendix F. BitSet Snippets of Code

// Code snippets for implementing a bitset stack
BitSetStack bsStack = new BitSetStack();

bsStack.clear();

if (bsStack.emptybits()) { // put stuff in here

// System.out.print("stack size = " + bsStack.lastindex() + ",n");

// subset is the array for valid subsets with status & rank, subS is size
subset = PopSubsetStates(subS + 1, subset, bsStack);

// nondeterminism status is converted to eliminated so restored stack causes new processing
try {
    stackUses++;
    bsStack = PushSubsetStates(subS + 1, subset, bsStack, nondetermSubscript);
} catch (IndexOutOfBoundsException e) {
    System.out.format("Error: Exceeded maximum bitset size! .n");
    System.out.format("Too many items were pushed to the stack! .n");
    System.out.print("Exiting...
");
    System.exit(0);
}

public static Integer[][] PopSubsetStates(int numOfSubsets,
    Integer[][] subsetArray, BitSetStack bitStack) {

    int lastBit = bitStack.lastindex();
    for (int f = numOfSubsets - 1; f > 0; f--) {
        boolean bit4 = bitStack.popbit(lastBit);
        boolean bit3 = bitStack.popbit(lastBit - 1);
        boolean bit2 = bitStack.popbit(lastBit - 2);
        boolean bit1 = bitStack.popbit(lastBit - 3);
        if (bit1 == false && bit2 == false && bit3 == false && bit4 == true) {
            subsetArray[f][0] = new Integer(0);
        } else if (bit1 == false && bit2 == false && bit3 == true
            && bit4 == true) {
            subsetArray[f][0] = new Integer(1);
        } else if (bit1 == false && bit2 == true && bit3 == false
            && bit4 == true) {
            subsetArray[f][0] = new Integer(2);
        } else if (bit1 == false && bit2 == true && bit3 == true
            && bit4 == true) {
            subsetArray[f][0] = new Integer(3);
        } else if (bit1 == true && bit2 == false && bit3 == true
            && bit4 == true) {
            subsetArray[f][0] = new Integer(4);
        } else if (bit1 == true && bit2 == true && bit3 == false
            && bit4 == true) {
            subsetArray[f][0] = new Integer(5);
        } else {
            System.out.println("Error: incorrect bit translation");
        }
    }
}
public static BitSetStack PushSubsetStates(int numOfSubsets,
    Integer[][] subsetArray, BitSetStack bitStack, int nondeterm) {

    int lastBit = bitStack.lastindex();
    for (int f = 1; f < numOfSubsets; f++) {
        if (f == nondeterm) { // eliminated 1011, was previously nondeterm
            bitStack.pushbit(lastBit + 1, true);
            bitStack.pushbit(lastBit + 2, false);
            bitStack.pushbit(lastBit + 3, true);
            bitStack.pushbit(lastBit + 4, true);
        } else if (subsetArray[f][0] == 0) { // available 0001
            bitStack.pushbit(lastBit + 1, false);
            bitStack.pushbit(lastBit + 2, false);
            bitStack.pushbit(lastBit + 3, false);
            bitStack.pushbit(lastBit + 4, true);
        } else if (subsetArray[f][0] == 1) { // primary 0011
            bitStack.pushbit(lastBit + 1, false);
            bitStack.pushbit(lastBit + 2, false);
            bitStack.pushbit(lastBit + 3, true);
            bitStack.pushbit(lastBit + 4, true);
        } else if (subsetArray[f][0] == 2) { // of interest 0101
            bitStack.pushbit(lastBit + 1, false);
            bitStack.pushbit(lastBit + 2, true);
            bitStack.pushbit(lastBit + 3, false);
            bitStack.pushbit(lastBit + 4, true);
        } else if (subsetArray[f][0] == 3) { // nondeterm 0111
            bitStack.pushbit(lastBit + 1, false);
            bitStack.pushbit(lastBit + 2, true);
            bitStack.pushbit(lastBit + 3, true);
            bitStack.pushbit(lastBit + 4, true);
        } else if (subsetArray[f][0] == 4) { // eliminated 1011
            bitStack.pushbit(lastBit + 1, true);
            bitStack.pushbit(lastBit + 2, false);
            bitStack.pushbit(lastBit + 3, true);
            bitStack.pushbit(lastBit + 4, true);
        } else if (subsetArray[f][0] == 5) { // finished 1101
            bitStack.pushbit(lastBit + 1, true);
            bitStack.pushbit(lastBit + 2, true);
            bitStack.pushbit(lastBit + 3, false);
            bitStack.pushbit(lastBit + 4, true);
        } else {
            System.out.println("Error: incorrect subset state");
        }
        lastBit += 4;
    }
    return bitStack;
}
Appendix G. A Large Solution for Inputs 1 through 2523

1 1264 2521  2 1266 2518  3 1267 2516  5 1890 1891  12 1251 2523  16 1248 2522  24 1242 2520
4 1270 2512  9 1888 1889  6 1286 2494  7 1282 2497  8 1288 2490  11 1292 2483  10 1304 2472
13 1294 2479  14 1308 2464  46 1221 2519  60 1209 2517  15 1316 2455  17 1312 2457  18 1338 2430
20 1324 2442  19 1318 2449  22 1352 2412  21 1330 2435  23 1340 2423  27 1322 2437  29 1337 2420
30 1325 2431  25 1378 2383  170 1101 2515  192 1080 2514  172 1103 2511  196 1077 2513
638 640 2508  636 641 2509  224 1052 2510  210 1069 2507  232 1048 2506  208 1073 2505
288 994 2504  310 974 2502  235 1051 2500  347 944 2495  360 930 2496  388 906 2492
395 898 2493  402 893 2491  434 864 2488  437 863 2486  390 909 2487  442 860 2484
448 858 2480  461 836 2489  417 884 2485  475 830 2481  532 772 2482  523 786 2477
522 788 2476  596 721 2469  620 700 2466  612 707 2467  474 837 2475  311 1187 2468
502 1122 2445  368 964 2454  619 728 2454  598 741 2447  600 742 2444  318 1023 2445
324 1010 2452  159 1184 2443  369 976 2434  508 838 2440  530 808 2448  119 1238 2429
678 680 2428  120 1245 2421  357 1002 2427  134 1220 2425  122 1239 2424  639 732 2416
670 699 2417  582 778 2426  584 780 2422  180 1193 2413  169 1171 2446  298 1074 2414
191 1190 2405  346 1021 2419  590 793 2403  418 962 2406  588 799 2399  406 973 2407
420 956 2410  398 980 2408  624 770 2392  412 972 2402  663 730 2393  690 706 2390
649 750 2387  454 908 2424  484 911 2391  499 890 2397  233 1135 2418  480 902 2404
214 1177 2395  257 1113 2416  462 938 2386  460 955 2371  446 963 2377  468 937 2381
369 1028 2389  599 802 2385  227 1159 2400  205 1202 2379  470 936 2380  514 894 2378
562 842 2382  691 722 2373  528 862 2396  455 966 2365  505 912 2369  504 914 2368
190 1233 2363  456 971 2359  279 1131 2376  36 1431 2319  478 946 2362  270 1141 2375
483 942 2361  538 878 2370  156 1263 2367  672 759 2355  273 1119 2394  184 1230 2372
466 979 2341  391 1042 2353  476 954 2356  264 1134 2388  597 840 2349  485 958 2343
564 865 2357  542 870 2374  254 1181 2351  544 892 2350  307 1132 2347  536 896 2354
294 1161 2331  341 1081 2364  293 1133 2360  486 967 2333  396 1050 2340  287 1164 2335
602 859 2325  325 1095 2366  492 981 2313  592 857 2337  682 756 2348  33 1648 2105
375 1072 2339  174 1254 2358  339 1102 2345  570 882 2334  38 1457 2291  315 1150 2321
300 1169 2317  566 888 2332  40 1473 2273  520 920 2346  353 1106 2327  37 1830 1919
301 1162 2323  258 1199 2329  168 1276 2342  321 1121 2344  578 886 2322  595 880 2311
408 1026 2352  617 866 2303  397 1082 2307  608 881 2297
Solution was found in less than 6 minutes and 10.38 seconds on an Intel i5 core 2.5 GHz laptop.