Abstract

G-quadruplexes are supersecondary structures that form in guanine-rich regions of DNA and RNA. These structures are extremely thermally stable, likely to form in ~750,000 locations in the human genome and are enriched in the promoter regions of proto-oncogenes and developmental genes, non-coding regions, and within telomeres. Due to the prevalence of these structures in key genomic locations, these structures are capable of regulating a large fraction of cellular processes. Within humans, the enzyme G4 Resolvase 1 (G4R1) is responsible for the majority of G-quadruplex resolving activity. This places G4R1 at the forefront of regulating all functions involved with G-quadruplexes. Despite regulating G-quadruplexes, a nearly ubiquitous structure throughout the human genome, G4R1 is relatively understudied. Within this thesis, I present a method for producing highly pure and selectively catalytically active samples of rG4R1 and discuss the potential involvement of G4R1 with the pathology of Amyotrophic Lateral Sclerosis.

Honors College
Ball State University
Muncie, IN 47306