Blurring the Building Boundaries
pulling the inside out, outside in

A Professional Retreat Center

Christine E. Profitt: Thesis Designer
Professor Robert Fisher: Thesis Instructor
Professor J. Rodney Underwood: Thesis Advisor
David Moore: Glass Technologies Consultant
James A. Profitt: Design Consultant
2002
Table Of Contents

1. **Introduction**
2. **Precedent Studies**
3. **Site Analysis**
4. **Summary of Spaces**
5. **Concepts**
6. **Floor Plans / 3-D model**
7. **Sections**
8. **Perspectives**
9. **Details/Diagrams**
10. **Mechanical details**
11. **Structural details**
12. **Model Pictures**
13. **Closing**
14. **References**
Introduction

Businesses of today are constantly pushing the idea of thinking outside the box, yet the environment in which these ideas are to be produced is itself often a constructive box, a.k.a., a cubicle. With ongoing debates over how much a human is defined through nature or nurture, it is interesting that the business world has seldom picked up on the idea of environmental conditions influencing human creativity. Opening up our senses to the possibilities provided by nature will help discover innovative thinking. Nature has no definite boundaries, and when man places boundaries upon nature, nature finds a way to push through them. It is difficult for most people to think creatively in a sterilized, routinized environment, but by placing people and their problems out of the typical context (such as moving from a conference room to a shady rock under a tree) it allows the mind to more easily extend beyond any previous constraints. We can learn more within our natural environment about how to surpass our own boundaries than we can inside tackable-surfsced cubes.

This thesis identifies ways architecture can influence and enhance the creative capacity of the human mind by reminding it of the ways nature implements creativity. Through a study of the human problem solving process (definition, research, analysis, selection, implementation, evaluation) and the natural problem solving process (evolution, survival-of-the-fittest, trial and error), an inspired piece of architecture will emerge incorporating both. Design issues such as inside/outside, natural/man-made, and environmental conservation will be utilized during the entire thesis process. A building for corporate business problem solving will implement these ideas to inspire creativity not capable of flourishing in a typical office setting. This facility will be approximately 60,000 square feet and located in a fairly remote location just south of Cripple Creek, Colorado. This is about 40 miles west of Colorado Springs, Colorado, and is intended for a maximum of 60 visitors at a time from any type of business with a need for environment, and to innovative ideas. The facility will accommodate many recreational activities as well as use near-by opportunities to enjoy this dynamic use its inspiration. The goal of this thesis is to explore how involving and utilizing the natural environment, through architectural means, will provide an atmosphere that promotes creativity.
Positions:
- alternative forms of energy and waste management must be considered in order to impact the natural site as little as possible
- architecture can be dramatically visible, but must be inspired in a form by acknowledging nature
- innovative materials should be researched and used where appropriate and possible
- environmental conservation must influence the design

Issues:
- Blurring boundaries between inside/outside and man-made/natural
- Enjoying and gaining inspiration from nature for solving business-related problems and creativity
- Providing an environment that contrasts from a typical office setting

The Problem Solving Process:
A. Define the Problem
B. Research the Problem
C. Analyze the Research
D. Consider solutions and choose best
E. Implement solutions (hypothetical or real)
F. Evaluate outcome

Six environment types to be explored
- Ice
- Forest
- Desert
- Swamp
- Yellow Stone
- Cave

Personal goals:
- What am I going to learn from the thesis?
- Will my design process be improved?
- What will be the output media for my project?
- What is the most effective way to convey ideas?
- How do I enhance the creative thinking process?
Precedent Studies

Fay Jones: “Bathing Grotto”

This design is used as a precedent study because of the attempt at creating an “outside” feel to an inside space. Fay Jones has long been known for designing with a strong inspiration from nature, but this bathroom is a peak for this kind of inspiration. However, the ceiling could have been incorporated into the design to make a complete space and to eliminate the boundary between inside and outside.

The three main areas for studying this example are: circulation, light, and scale.

Congo Exhibit at Bronx Zoo

This design is used as a precedent study because it creates a feeling of being inside while actually outside, and it creates a feeling of being outside while actually inside. It also provides excellent opportunities for interaction between humans and nature, in this case, gorillas.

This design effectively blurs the lines between inside and outside creating a more inviting space for interaction. The width of the space, however, does not allow for groups of people to easily gather. This design could be implemented where one activity should have views to another activity.

Yokogawa’s Hydrotherapy Spa

This design is used as a precedent study because it literally creates the outside environment, inside. It is a similar building to the retreat for the thesis, but it focuses on relaxing while the thesis project focuses on relaxing working.
Fay Jones: “Bathing Grotto”

The sequence of spaces form a hierarchy of privacy as a person moves into the room. It starts open and semi-private, moving to closed and very private.

A person is drawn into the space (whether they need to use the facility or not) and this appears to be an effective way of moving people. It’s probably not very effective or practical in a bathroom situation, but it may be useful in drawing people into a small discussion area or into a kind of “private garden.”

Congo Exhibit at Bronx Zoo

This space creates the sense of being outside with the gorillas while having a safety barrier unobtrusive. This could be implemented between a conference space and outside garden, or public areas with the creative lab.

Yokogawa’s Hydrotherapy Spa

The views are mostly focused from the center looking out. But, with this site there isn’t much to look at beyond the glass arch. The glass almost creates an unwanted barrier between the natural environment, and the man-made “natural” environment because even though there are beautiful landscapes inside, curiosity for what is beyond the arch competes for attention. If there was a way to eliminate the dominance of the arch structure, this may feel more like an oasis found in the desert rather than a man-made bubble out of context.
Site Analysis

Cripple Creek, Colorado

I had the opportunity to travel to Colorado for a recreational vacation before the fall semester, and while on this vacation I came across a beautiful, dynamic site off of S.R. 67 which runs through Phantom Canyon. Eight Mile Creek runs through the site and along the road on alternating sides. Where the river switches sides, the road goes through a rocky tunnel. Elevation here is about 6,100 feet above sea level. The entire possible area is 500' X 750'.

Picture of site looking NorthWest

Picture of site looking West

Picture of mountains near site
Circulation:

There is one dirt road about 12' across that travels east/west at this section of the mountain and goes under the site through a rough tunnel. There is no pedestrian traffic at this time.

Winds:

The winds naturally follow the shape of the valley made by the creek. These can sometimes create strong winds over a small area. The trees and mountains help to buffer the winds.

Sun Path:

The sun doesn't directly hit many areas of the site except at sunrise and near noon. Very little direct light reaches the ground at the site because of the height of surrounding mountains. The closer to the stream, the less direct light is present.

Boundaries:

The mountains, creek, and road are really the only existing boundaries - the mountains form a 12' cliff as they approach the stream for a vertical boundary.

Site Dimensions:

The site is very large and very steep. The road is about 12' across and the creek is about 25' across. The size of the possible usable area is 500' x 750'.

Vegetation:

This site has very few trees close to the creek. A few scattered shrubs are growing throughout, but coniferous trees are fairly dense toward the top of the mountains.
Summary Of Spaces

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry</td>
<td></td>
<td>800 SF</td>
</tr>
<tr>
<td>Administration (5 people)</td>
<td></td>
<td>1070 SF</td>
</tr>
<tr>
<td>Offices (5)</td>
<td>100 S.F. X 5 = 500 S.F.</td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>450 S.F.</td>
<td></td>
</tr>
<tr>
<td>Bathrooms (2)</td>
<td>60 S.F. X 2 = 120 S.F.</td>
<td></td>
</tr>
<tr>
<td>Employee Area</td>
<td></td>
<td>520 SF</td>
</tr>
<tr>
<td>Locker Room/Storage (2)</td>
<td>150 S.F. X 2 = 300 S.F.</td>
<td></td>
</tr>
<tr>
<td>Vending Area/ Coffee</td>
<td>100 S.F.</td>
<td></td>
</tr>
<tr>
<td>Bathrooms (2)</td>
<td>60 S.F. X 2 = 120 S.F.</td>
<td></td>
</tr>
<tr>
<td>Lecture Hall (60 people)</td>
<td></td>
<td>700 SF</td>
</tr>
<tr>
<td>Storage</td>
<td>100 S.F.</td>
<td></td>
</tr>
<tr>
<td>Seating</td>
<td>500 S.F.</td>
<td></td>
</tr>
<tr>
<td>Stage (movable)</td>
<td>100 S.F.</td>
<td></td>
</tr>
<tr>
<td>Banquet/Dining Hall (70 people)</td>
<td></td>
<td>2,400 SF</td>
</tr>
<tr>
<td>Kitchen</td>
<td>1,200 S.F.</td>
<td></td>
</tr>
<tr>
<td>Seating</td>
<td>1,200 S.F.</td>
<td></td>
</tr>
<tr>
<td>Living Suites (6 people)</td>
<td></td>
<td>12,100 SF</td>
</tr>
<tr>
<td>Common Area</td>
<td>175 S.F.</td>
<td></td>
</tr>
<tr>
<td>Kitchen/Utility Room</td>
<td>75 S.F.</td>
<td></td>
</tr>
<tr>
<td>Personal Area (per person)</td>
<td>160 S.F. X 6 = 960 S.F.</td>
<td></td>
</tr>
<tr>
<td>Sleeping</td>
<td>100 S.F.</td>
<td></td>
</tr>
<tr>
<td>Bath</td>
<td>60 S.F.</td>
<td></td>
</tr>
<tr>
<td>Conference Area (5-10 people)</td>
<td></td>
<td>1,200 SF</td>
</tr>
<tr>
<td>Seating</td>
<td>200 S.F. X 6 =</td>
<td></td>
</tr>
<tr>
<td>Storage/Multimedia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Discussion Area (2-3 people)</td>
<td></td>
<td>750 SF</td>
</tr>
<tr>
<td>Seating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furniture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Library (30 people max.)</td>
<td></td>
<td>800 SF</td>
</tr>
<tr>
<td>Computers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creative Lab (30 people max.)</td>
<td></td>
<td>500 SF</td>
</tr>
<tr>
<td>Seating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commons/Lounge (30 people max.)</td>
<td></td>
<td>500 SF</td>
</tr>
<tr>
<td>Seating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pool/Sauna/Exercise Area</td>
<td></td>
<td>4,000 SF</td>
</tr>
<tr>
<td>Exhibit Area</td>
<td></td>
<td>800 SF</td>
</tr>
<tr>
<td>Service/Storage/Loading Dock</td>
<td></td>
<td>1,500 SF</td>
</tr>
<tr>
<td>Total Net x 2 =</td>
<td></td>
<td>54,880 SF</td>
</tr>
<tr>
<td>X .10 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>60,386 SF</td>
</tr>
<tr>
<td>Total Gross Area (60/40 ratio)</td>
<td></td>
<td>60,386 SF</td>
</tr>
</tbody>
</table>
Description of design (Administration):
The area will consist of a mostly open plan for the offices with movable workstations, allowing modularization of work areas. The offices will be used daily for completing paperwork, taking telephone calls, conducting business meetings, and greeting guests when they arrive. Visual connections to the entry, the public spaces of the building, and to nature are very important for security and communication. Daylight will be used where possible to eliminate any sense of feeling closed in. Electrochromic glass panels will be used to keep inside-outside connections while providing privacy when needed.

Description of design (Employee Area):
The employee area will provide lockers and a small break area for maintenance, cleaning staff, and kitchen employees. These employees will have access to the main lounge with guests. The room will have a 10' ceiling to allow comfort at sitting and standing level. Visual privacy will be important for changing of clothes, but visual connection to outside and entry will also be important. Daylight will be used where possible.

Description of design (Lecture Hall):
The lecture hall will be used as the initial gathering space for guests as they start the problem-solving process as well as the gathering space for the end of the problemsolved presentations. This hall will have high ceilings to accommodate lighting and acoustical needs. Daylight will be used where possible to allow the space to be slightly informal as well as reduce the environmental impact of large space heating and lighting. Direct views to the outside will be limited to reduce distractions for the audience and presenters. Possible electrochromic glass could be used to turn the views on and off and to help with lighting conditions.

Description of design (Dining Hall):
The dining/banquet hall will be used for the guests' two main meals of the day, breakfast and dinner. Lunch will be held in the living suites. Guests will also be able to hold meetings in this area. The hall will have high ceilings to feel more open with glass for daylighting and views to the outside as much as possible. Large balconies and/or decks will be used for outdoor eating.

Description of design (Living Suites):
The living suites will provide non-working space for six people as well as personal journal writing space in the personal areas. The common area and utility area will be centered within the personal areas. Daylight will be used wherever possible and views with balconies/decks will be utilized. The public areas will have high ceilings and the private areas low.

Description of design (Group gatherings):
There will be a total of six group gathering areas in which each will have a maximum of ten people. This room is to be used as a group discussion area for research, analysis, and hypothetical implementation of possible solutions to a business problem. The rooms will be based on one of six natural environments: cave, desert, swamp, forest, yellowstone, and ice.

Daylight will be used on at least one wall, but with electrochromic glass in order to create darkness when needed. Many outlets and switches will be located in the room and easily visible for quick access. The multi-media equipment will be on rolling carts for quick implementation and removal. All furnishings will be on wheels to allow fast changes within the room.

Description of design (Private Discussion):
The private discussion area is meant for two to three people to have intimate conversations in a variety of different atmospheres. The rooms is to be used as discussion area for research, analysis, and hypothetical implementation of possible solutions to a business problem. The room will have low ceiling to create a comfortable atmosphere for conversation. Daylight will be used wherever possible, but with electrochromic glass in order to create darkness and privacy when needed.

Description of design (Research Library):
The Research Library is the final step to the problem solving process, and so it is crucial for the space to feel comfortable and be very functional. It will have complete access by the conference rooms and will be near the small discussion area. The room will have a high ceiling to allow, indirect daylight to fill the space to bring relief from the light created by computers and light fixtures.

Description of design (Creative Lab):
The Creative Lab is an important step to the problem solving process, and so it is crucial for the space to feel comfortable and be very functional. It will have complete access by the group gathering rooms and will be near the small discussion area. The room will have a high ceiling to allow natural, indirect light to fill the space to bring in comfort from the artificial light created by light fixtures.

Description of design (Activity areas):
The activity area is where the guests will blend their "free" time with the problem solving process. This room will be used for the designated activities to initiate steps in the problem solving process as well as allow people to accomplish personal goals, such as how fast they can swim if how high they can climb. The area will also be used for relaxation at the end of long "working" days to allow people to go back and learn more about the activity they had engaged in earlier. The ceiling will be high in order to hold such things as the rock climbing wall, waterfall, pool, an exercise room, and a sauna.

Description of design (Exhibit Space):
The exhibit space is meant to present the accomplishments of the current guests in their problem solving process. The exhibit space will mostly be used at the end of the guests stay, but ease of movement through the area is important at all times. Semi-low ceilings will be used to make the space feel comfortable and personal.
The main concepts for the design are an inside-out geode and an “A-B” structural organization. The geode concept provides a lot of flexibility in sizes, shapes, and opacities, while the structural grid provides an easy-to-follow organization helping bring order to chaos.

The first conceptual sketch I did helps capture the essence of the design that I continued to follow throughout the design phases.

Structural “A-B” grid pattern for columns and beams. The “A” is 8’ and the “B” is 24’. This translates vertically to a 4’ and 12’ grid which make the floor and ceiling heights.

Structural grid placed on site

Structural grid in plan over entire site
This is an axon sketch to show how the structural grid covers and interacts with the site. The structure becomes the geode emerging from the mountain creating views from the inside out, and views from the outside in.

This relationship matrix helped to originally set up the placement of different parts of the program as well as identify an organizational pattern.
The floor plans are meant to be very open for flexibility of spaces within each type of use and environment. There is a main axis that runs North/South through the entire design which is the main circulation axis and is located with the red lines that connect all plans. The funiculares run in this axis and are capable of stopping at any floor level to allow access into each area.
This is a view of the thesis design from a bird’s eye view. The model was drawn in 3-D AutoCAD 2000, and Accurender 3.0 was used to attach material qualities. The Entry is to the right side with the entry walk curving around the base of the mountain to join with the funicular. The guests arrive and meet with check-in staff to learn where they will be sleeping. The guests then proceed along the entry walk which gives them an entire view of the professional retreat to get oriented with all areas. From the walk the guests can ride the funicular to their living suites and begin the process of problem solving and creative thinking.

This is the view of the retreat one would see if standing at the peak of the adjacent mountain. This shows the Entry and Entry walk with a suggestion of how the structural organization starts to become the inside-out geode emerging from the mountain.

While approaching the retreat along the entry walk, people will be inclined to look up at the building they will be staying in for a week long creative journey. From this view it is easy to see the design incorporates many balconies and many areas of varying transparency which make it difficult to distinguish what areas are actually “inside” and which are “outside.” This helps the design promote a feeling of always being connected to nature, and a sense that there are no definite boundaries.
This view shows how the “catwalks” connect the various areas of the design. All major circulation is outside which helps the professionals relax from the strain of creative thinking, and to allow beauty of the site to be acknowledged constantly. These catwalks all connect to the funiculars which run down the central circulation spine, as well as the stairs which run along-side of the funiculars.

This is a view from the circulation spine. The living suites are above and the research library is below. The funicular would run in between the structure shown up to the peak of the mountain. Beyond the peak is a look-out area which acts as a release from the design into a completely natural environment. This would act as a gathering point for users to enjoy a late night activity meeting, or to enjoy time reflecting to themselves.

The view from the peak of the mountain shows the living suites and how they allow the guests to view the entire site from their bedrooms. Guests would be able to sleep outside on the decks under the stars, under a glass roof for some elemental protection, or under an opaque roof with metal panel walls to provide a greater sense of enclosure. This allows the guests to create their own comfort levels in their private areas.
This sections shows how the spaces relate vertically. The funicular runs north/south connecting all areas in the design. The Dining Hall, Exhibit Area, and Lecture Hall are shown in red. The Living Suites (which hold six people each) are shown in orange. Each of the three levels for the "working" part of the building signify three levels of group sizing. The floor where everyone will be able to do research and exercise is to be used by the entire group at one time is shown in yellow. The green floor is to be used by groups of about ten people to start the creative processes of problem solving. The floor indicated in blue is meant for groups of two to three people to discuss possible solutions to given problems and for private time to think and meditate. The area over the creek is dedicated for an outdoor lounge where socializing in a relaxed setting will be the main activity. The area on the north mountain is for PV panels to be placed to collect solar energy and to create intimate spaces for gardens and trails which lead out into the natural environment.
This is an elevation that was done to show how the structure becomes a geode on the mountainside. It also shows the access road (S.R. 67), the Entry, and the Entry Walk. This elevation also shows the multiple opportunities that guests have to enjoy decks, activity areas, and the natural landscape.
The pictures to the right are views looking out over one of the decks of a living suite. The natural mountains make up the horizon line to allow guests to feel like they are on a camping trip rather than in a working environment. The materials to be used in the living suites are electrochromic glass (to be able to create privacy where needed), steel, metal panels for walls, and concrete floors with comfortable rugs placed on them. The furniture will probably be from one of the local designers that uses white cedar and comfortable fabrics or leather for a transition between the man-made steel structure and natural mountain views.
This perspective is a view while riding on the funicular. It offers an axial view of the site and the building while providing an orientation point so no one can become lost. The structure along the funicular is red instead of orange to help emphasize the circulation axis. The outdoor lounge can be seen at the bottom of the funicular.
This is a view of one of the group gathering spaces with an activity pool and waterfall for the guests to use. There are many deck areas to be accessed for the different environments and access to the gardens created on the mountain.
This perspective shows the catwalk from the funicular to the outdoor lounge as well as an area for small group activity. The funicular across the outdoor lounge is to provide access to the trails that allow guests to explore the natural environment.
Environments

Environment: Forest

The forest environment is meant for small group gathering. It allows the guests to sit intimately under a shady area and talk without being disturbed by surrounding noises. There will be log furniture and large stones to provide natural seating areas. The activity associated with this environment will be a military training course which uses tree stumps and boards to get an entire team across an area.
Environment: Yellowstone

The yellowstone environment will mostly be outside and meant for large group gathering. The openness of this environment allows guests to meet and discuss problem solving ideas easily, as well as combine groups if needed. The activity for this environment will use a local rock climbing area off site.
Environments

Environment: Ice

The ice environment won't be made of ice, but rather of glass and polycarbonates in order to look like ice. This environment is meant to be intimate and meant for gatherings of two to three people. There will be an outdoor garden that will have white sand and the activity for this space will be a movable rock garden where the teams can create their own designs.
Environment: Swamp

The swamp environment is meant for large group gathering and will have a green rubbery floor in order to mimic the algae covered water. There will be a connection to a modern garden with metal cattails that can be swayed back and forth to create sounds of different pitches.
Environments

Environment: Cave

The cave environment will run under the outdoor lounge area and incorporate Eight Mile Creek to make an interactive environment. The creek will be used by teams of two to three with canoes, kiyaks, or rafts and will be used as intimate spaces on the dry parts of the cave.
Environment: Desert

The desert environment will be used by large groups for problem solving and creative thinking. The openness of this environment allows people to move freely and interact with each other. The activity for this area will be a hike through the environment and out into the natural site.
Mechanical Details

The professional retreat is meant to impact the site as little as possible in a negative way. The energy will be provided from solar power and from a co-generation plant that runs along under the entry walk. If need be, additional power can be provided from off-site windmills or even hydroelectric powered generators driven by the creek. Since there is no purified water at the site, a series of filtration tanks will also be located under the entry walk which will put purified water back into the creek. The drinking water will come from rain gathered at the top of the north mountain and then carried like a siphon up to the top of the south mountain. The funicular will be powered by electricity, but helped with energy conservation by using water from the creek to balance the two platforms.
Breaking system

Swivel trough

Centered while tanks move. Fills the empty tank at top.

Water to return to creek

Funicular tank diagram

Aluminum discs attached to shaft

Electric drive motor

Tunicular pulley

Magnetic torque converter

Clutch diagram
The "A-B" structural grid is applied both horizontally and vertically. Horizontally the grid is "8'-24" and vertically "4'-12". The structure is meant to allow an organization for circulation and for mechanical systems. The 8' parts of the grid can become stairs or catwalks while the 24' parts of the grid are open areas for living and activities. The column design allows the mechanical systems to move vertically, and the 4' vertical spaces allow the mechanical systems to move horizontally.
The diagrams at the left are plans of the column and beam layouts. The columns themselves are made of four 3x3 90 degree angles that are welded together by one inch stapping. This design was chosen because it allows the columns to blur their own boundaries. The beams are offset and always placed on the outside of the eight foot part of the structural grid.

The diagrams to the right are elevations of the column and beam layout. The one inch banding can be seen in the diagram at the top. The beams are offset to mimic the mining vernacular of timber construction in the area. The column is supported by a two foot diameter concrete pylon driven into the mountain rock. The pylon supports the columns with a delicate bracing cage.
The pictures shown here are some of the process models that were constructed in order to understand an concept in three dimensions and how that concept relates to the site. The first picture is a model of the inside-out geode and the model pictures below are of the structural grid. These were developed to form an initial living sweet (upper right) and eventually to form the final concept model in the lower right. Two-dimensional drawings can never show the impact the thesis concepts have on this particular site, so the models were important to the design process. Below is what the final model would look like on the site.
These are pictures of the final model that was constructed to show how the structure works with the inside-out geode concept in order to blur the boundaries between inside and outside. Above is an overall picture that highlights the circulation spine which holds the funiculars. The pictures to the right are close-ups. The top is a picture of the creative learning lab and its relation to the funicular. The middle picture shows the living suites at the top and again the circulation spine. The lower picture shows a close-up of the creative lab and how the layering of structure and glass planes help to erase the definite boundaries between inside and outside.
This thesis project has provided many opportunities, like learning about new building technologies, and many obstacles, like finding an organizational system that was flexible enough to accommodate the concepts I wanted to explore. Overall I am pleased with how the design was resolved though the inside-out geode concept and the “A-B” structural system. The design process was always enjoyable and that was probably the best part of doing this project. The most difficult part of the project was that every time I found an interesting solution to a problem, a new and better one would present itself, yet there was never enough time to explore every solution.

I think that with more time I would like to pull the entire design apart to create more open and interesting spaces, rather than have the building as compact as it stands right now. I think it would benefit the professionals to be able to feel like they were in a completely different part of the world in each of the environment types, rather than just in another room. It would also be nice to have been able to explore each of the environment types further in order to design more specific places rather than suggest what a space would be like.

I do feel that I was able to cover every aspect of the project in at least some way whether it be structural, mechanical, business, circulation, design, and many more detailed ideas. I don’t think I’ve ever been able to bring all of these parts of a building together as well as I have been able to with the professional retreat center. This is probably because it is the only project to which an entire semester is devoted to, but also I feel it is because I was able to see the design impacts of all systems more easily with this project and with this site. This project has been an absolute pleasure to work with, and it has re-inspired my ambition to design.
Many people have provided support for this project in many different ways, and even though I could never make a complete list of everyone who has helped, there are a few people who deserve being called to attention. I would like to thank my professors Robert Fisher and J. Rodney Underwood for not only their professional expertise in teaching, but also for the incredible moral support they have given me. These two professors in particular have been able to push my design skills in ways no one else has, and have been able to open my mind up to the potential that lies within. I would also like to thank Jeff Culp who has had an enormous impact on my design skills and always encouraged me to pursue the wildest ideas that came along, in other words, thanks for the funicular!

My parents, James and Karen Profitt, deserve more gratitude than I could ever express in words. Their financial and emotional support has always been with me so that I’ve been able to pursue my dreams without any hesitation. A special thanks goes to my dad for also helping with the design of this thesis. He has been able to show me how much fun it can be to explore all possibilities of design, and along with my mom, has been able to keep my feet on the ground as a constant reminder to enjoy the closing to my college experience. There are many people in the studio classes who have given me ideas for this project, and I am grateful to them all for that, but I am more appreciative of the friendly and caring support that we were all able to offer and receive throughout the thesis process. Thanks everyone!
References

Books:

Lectures:

Articles:
Schindler, Todd. “From Sphere to Eternity” Metropolis. February/March 2000. 38.

Web Pages:
http://www-civil.eng.ox.ac.uk/research/glass/museum.html
http://www.piilkinson.com/mediatoc/releases.htm
http://www.polygalusa.com
http://www.pittsburghcorning.com
http://www.schottglass.com
http://www.wisdomhouse.org
http://www-pub.cise.ufl.edu/~ddd/cap6635/Fall-97/lecture-a/sld045.htm
http://www.skylondalodge.com