Structural Design
Arch., and Analytic
Report

Psychrobiontecture
Natural Light & the Mind

Intrusion into the realm of natural light and its ability to affect one's mental and emotional health
brian michael parker

psycholotecture

NATURAL LIGHT & THE MIND
an investigation into the realm of natural light and it's ability to affect ones physical and mental health

solar light therapy retreat center
outside of phoenix, arizona

may 1998

psycholotecture...
brian michael parker

psycholotecture

NATURAL LIGHT & THE MIND
an investigation into the realm of natural light and
it's ability to affect ones physical and mental health

bachelor of architecture degree program
thesis design

A. Seager
architectural design studio instructor

P. George
architectural professor — thesis critic

©1998 brian m. parker

psycholotecture...
Since the dawn of man, humans have maintained a consistent connection with the sun. As architecture evolved, so did the role that natural light played in the design of structures. These days, the sun has lost its position atop the list of essential design criteria. From office buildings containing hundreds of cubicles and core offices, to eliminating glazing as a means of cutting building costs, architecture lost its relationship with the sun. This thesis is a tool for designing a possible way of reconnecting humanity with natural light through architecture. The design will act as a prototype for a new building precedent. It will take the shape of a light therapy retreat. The premise is that humans rely on sunlight for basic survival, as the building industry continues to limit the role of natural light in architecture, society has begun to suffer both physically and psychologically. Citizens who become afflicted with symptoms of sun deprivation would be referred to the clinic for treatment. The general criteria for the retreat center is that people will interact with natural light in a variety of ways throughout the day. No space will be without sunlight in some form. Light becomes the driving design ideal and plays a vital role once again in the creation and character of the architecture. Mankind shall not be deprived of man's oldest medicine, the sun.
Sunshine is a vital key to the survival of mankind. It warms us, allows plants to grow and oxygenate the planet, and provides the earth with food. Aside from the basics, the sun plays an even more elemental role in our survival...

"It keeps us healthy in both MIND and in BODY"

as humans we require vast amounts of natural sunlight to maintain and regulate many of our bodies functioning systems. these include both physical and mental elements. "how can designers use and harness the healing powers of natural sunlight to influence architecture?" factors such as site, structure, systems, and life cycle costs are typically at the forefront of a designs mind. what about questions like "how can one manipulate space to provide for the highest amount of physical and mental healing to occur?"

Health and wellness as an overall concept differ from person to person. This does not mean, however, that there are no elements of health which can affect everyone. the benefits of sunlight are some of these elements. the idea of perception is another factor which varies from person to person but there are several constants which are similar to all. the conscious and subconscious perception of natural light and the obvious power it has on the human body as well as the psyche is one of these constants.

PSYCHOLOTECTURE represents the integration of this idea of psychologically perceiving that one is healing both the mind and body into the design ideals of architecture. physically and psychologically enhancing spaces with the inclusion of natural light into the design concept. "is there a set of criteria which can be developed by architects to integrate these ideals into a design?"
Natural light is the quintessential element of timeless Architecture. If light is "the giver of all presence," it can be postulated that natural light is the soul of a place. Its luminosity clarifies the mental as well as the physical realm, the prosaic as well as the poetic, the profane as well as the sacred. This soul is sensed by the observer and leads to immediate knowledge of the space (Lakeman 20).

Sandra Davis Lakeman stated that natural light "is the soul of a place" but it plays many other crucial roles in the ever expansive field of architecture. It allows us to see, it keeps us warm in cold weather, and it helps wonderful green treasures of nature to thrive and grow. Natural light may be the quintessential element of timeless architecture but it is quite often overlooked for its important role in the building industry, promoting good health and well being. Although seldom used as a design essential, the inclusion of natural light in buildings can greatly help to promote good health, well being, and increase ones overall enjoyment in a particular built environment.

Before one can assess the value of bringing increased amounts of light into structures the various needs the body has for it, as well as the negative aspects of insufficient amounts must be properly analyzed.
To understand better how the body reacts to natural light a scientist named John N. Ott experimented on cells of elodea grass. He discovered that each cell would perform in an established pattern when exposed to any natural sunlight condition. Mr. Ott's studies progressed to later discover more and more of the effects of natural sunlight and its positive effects on mans health (Ott 4-5). Every human has a photobiological need for natural light. This need pertains to a vast list of systems and functions throughout the body including glucose balance, growth hormone levels, as well as numerous other areas of body activity. Mans social, psychological, biological and behavioral health are heavily influenced by light (Spivack 10,67,75). Another aspect of mans need for natural light is for the production of a vital chemical known as melatonin. Often discussed in conjunction with a common health problem known as SAD (Seasonal Affective Disorder) syndrome, the decrease in melatonin occurs when sun light levels drop below 2,500 lux. A decrease in the production of this chemical is known to produce such disorders as severe depression and societal withdrawal (N.I.H. 78). Some final negative effects of decreased amounts of natural light on the human mind and body are that of weight gain, over heating, alcoholism, and the disruption of personal relationships.
With a knowledge of the bodies needs for natural light as well as the adverse effects of receiving an inadequate amount, some of its positive attributes may be explored. The first, and maybe most important, human reaction to sunlight is that of increased visibility. A dionysian reference states that “sunlight is the progenitor of life. Without it life would cease to exist, and cease to see” (Slagan 6). Natural light is proven to reduce eye strain from florescent light and is actually considered healthy exercise for the eyes. One problem of artificial light is that it often produces harsh shadows and excess glare, but natural sunlight is often a more balanced and clear form of light. Studies have shown sunlight can also have very positive effects on some common health problems as well. Physiological problems such as depression may be greatly improved with light therapy as well as P.M.S. and jet-lag.

It can be said that natural light plays a major role in our lives by helping to keep us healthy and happy but how is this linked to the practice of design and of architecture? A starting point in making this connection is to look at the office environment and how the inclusion of natural light plays an important role. To begin one must know the bases behind a principle factor referred to as the Circadian Rhythm. This “rhythm” is essential to the body to regulate its systems and to...
optimize synchronization of our natural cycles; sleep times and awake times. The regulation of the Circadian Rhythm is achieved by allowing enough natural light into an office environment thus allowing the brain to acknowledge that is indeed on the awake, daylight, portion of the cycle and responds by maximizing alertness. Many people who work in offices with little or no natural light begin to feel indifferent toward their jobs and suffer from extreme lack of productivity. A case study in an office building located in Colorado found that it had shown a 15% decrease in absenteeism and a rapid increase in employee morale after only two months of increasing the buildings natural light admittance. A receptionist at the Rhodes-Patel office building, located in Elizabethtown KY, is quoted as saying “I think all this light is terrific. I am a person who always liked natural light and I feel that it creates a very pleasant and relaxing atmosphere for the people who work and visit here”(I.M.M.R. 27). Another important factor that natural light helps to encourage is that of energetic, productive workers. Society has often felt a great appeal to have contact with the outdoors. By allowing increased amounts of natural light into many of a buildings offices, business owners will find that their employees feel much better at work because they have reached a certain mark of success(Vonier 150). Since 40% of America's working population are employed within
offices, the overall productivity of the nation is at stake.

Natural sunlight plays a major role in human life. This too is true in architecture. Aside from the logical and economical reasons for the inclusion of natural light into buildings, there is the notion that sunlight can promote well being and good health and it should be integrated into designers' philosophies to improve the overall quality of one's built environment.
works cited

works consulted

description: vertical light-scoop

features: light admitting plane is parallel to ground plane.
 interior reflection plane is curved toward direction of sun azimuth.
 all reflection surfaces are white.

test results: spring months (march 15 used as average analysis date)
 early morning produced general indirect light on reflection
 surface; characterized as warm glow. full depth of space was
 minimally perceptible. change did not occur until late
 morning (c. 10:40a.m.).
 noon (including one hour pre/post) glow increased in
 intensity. projected plane of light on floor. depth perception
 was greatly reduced but definition of light source was greatly
 enhanced.
 afternoon became the same as early morning.
 night (artificial lighting behind reflection surface) displayed full
 depth of space without natural character.

test results: summer months (june 21 used as average analysis date)
 early morning produced general indirect light on reflection
 surface. change recognizable at c. 9:30a.m.
 noon (including one hour pre/post) intense sunlight falling on
 floor surface. depth of space was unclear. light beams
 cascading down both walls. intense glow of reflection
 surface.
 afternoon became same as morning.
 night (same in every scenario).

test results: autumn months (september 15 used as average analysis date)
 the general character of all times was nearly identical to the
 spring study.

test results: winter months (december 15 used as average analysis date)
 early morning produced general indirect light on reflection
 surface. full depth of space was minimally perceptible.
 change did not occur until extreme late morning (c.
 11:15a.m.)
 noon (including one hour pre/post) some increase in intensity
 of reflection surface. depth of space remained minimally
 perceptible.
 afternoon became same as morning.
 night (same in every scenario).
description: frontal/overhead glazing

features: interior ceiling surface is curved and reflective.
overhead light entry points are five sided prismatic glass boxes.
frontal glazing is from floor to ceiling.

test results: spring months (March 15 used as average analysis date)
 * early morning produced general light patterns on floor through
 frontal glazing. some light patterns noticeable on walls from
 overhead entry.
 * noon (including one hour pre/post) overhang prevented most
 direct frontal entry but maintained strong indirect light. two
 intense box patterns of light on floor from overhead entry
 moved in semi-circular rotation.
 * afternoon became the same as early morning.
 * night (artificial lighting) no dramatic effects.

test results: summer months (June 21 used as average analysis date)
 * early morning produced general light patterns on floor through
 frontal glazing. some light patterns noticeable on walls from
 overhead entry.
 * noon (including one hour pre/post) overhang prevented all
 direct frontal entry but maintained strong indirect light. two
 intense box patterns of light on floor from overhead entry
 moved in semi-circular rotation.
 * afternoon became same as morning.
 * night (same in every scenario).

test results: autumn months (September 15 used as average analysis date)
 the general character of all times was nearly identical to the
 spring study.

test results: winter months (December 15 used as average analysis date)
 * early morning produced general light patterns on floor through
 frontal glazing. some light patterns noticeable on walls from
 overhead entry.
 * noon (including one hour pre/post) some direct frontal entry
 casting long beams of light. two small box patterns of light on
 floor from overhead entry moved in semi-circular rotation.
 * afternoon became same as morning.
 * night (same in every scenario).
description: surface reflection-frontal/overhead

features: frontal planes are spaced apart to create openings.
interior reflection surfaces are mirrored.
secondary opening cut in ceiling perpendicular to main one.

test results: spring months (march 15 used as average analysis date)
 early morning produced general indirect light from frontal
 entry. several long beams of light on floor and up walls from
 eastern perp. opening.
 noon (including one hour pre/post) frontal opening producing
 large pattern of light onto wall which moved down to floor and
 back up other wall.
 afternoon became the same as early morning but through
 western perp.
 night (artificial lighting) floor lighting reflecting off of reflection
 panels to illuminate center portion of the space.

test results: summer months (june 21 used as average analysis date)
 early morning produced general indirect light from frontal
 entry. several long beams of light on floor and up walls from
 eastern perp. opening.
 noon (including one hour pre/post) frontal opening producing
 large pattern of light onto wall which moved down to floor and
 back up other wall. continued up wall until reflected from
 ceiling back onto floor.
 afternoon became the same as early morning but through
 western perp.
 night (same in every scenario).

test results: autumn months (september 15 used as average analysis date)
 the general character of all times was nearly identical to the
 spring study.

test results: winter months (december 15 used as average analysis date)
 early morning produced general indirect light from frontal
 entry. several long beams of light on floor and up walls from
 eastern perp. opening.
 noon (including one hour pre/post) frontal opening producing
 large pattern of light onto wall which moved down to floor and
 back up other wall.
 afternoon became the same as early morning but through
 western perp.
 night (same in every scenario).
The use of natural light as a form giver has been around for centuries. Historical precedents can be found down a number of avenues, including that of Frank Lloyd Wright. Using the sun as the driving design idea, structures such as the marting house in Akron, Ohio and the house for Herbert in Middleton Wisconsin were created.

There is an overall general character of the Arizona landscape. From barren desert to richly vegetated mountains, a notion of what is inherently "Arizona" remains.
Location plays a vital role in any project based on the overall integration of natural light. When other factors such as building type and precedent are included in the equation, the location becomes the main focus of the design. In order for any design ideal which is based on the need for natural light to perform their functions, the key being the act of healing, object placement and location become critical. With such a specific goal in mind, the location of such an object becomes a focused and simple task.

Global annual percentage of possible sunlight becomes the starting point for site selection. This search reveals northern Africa and the southwest United States to have the highest amounts. Eliminating Africa, the southwest of the United States becomes the focus. Further refinement reduces the selection to Arizona. Yet another distillation brings the final site location to southwest Arizona, just south of the Rainbow Valley.
psychology...
psychology architecture
site

site topography

site orientation

psycholotecture...
solar chart site layout

site plan

site isometric

psychology
tecture...
design development

classic zenith sketch-01
fig. 053
classic zenith sketch-02
fig. 054
dwelling iso
fig. 055
dwelling iso
fig. 056
dwelling proximity plan
fig. 057

psychoskeleton
section/isometric [west/east]

building section [west/east]

psychology architecture...
solar shade down

east elevation

psycholotecture...
solar shade tracking

fig. 064 fig. 065

fig. 066 fig. 067

solar clock tower

fig. 068

ps y c h o l o t e c t u r e ...
a.m. dwelling solar entry

in-direct afternoon sun

direct morning sun

fig. 069

psychologyecture...
dwelling cooling system

earth cooled air-flow drawn into air intake 76'4" away

35.
solar study-01

march 02, 1998 9:45am
solar shade up
fig. 071

march 02, 1998 9:45am
solar shade down
fig. 072

march 02, 1998 1:30pm
solar shade up
fig. 073

march 02, 1998 1:30pm
solar shade down
fig. 074

psychology...
solar study-03

sept. 02, 1998 9:45am
solar shade up
fig. 079

sept. 02, 1998 9:45am
solar shade down
fig. 080

sept. 02, 1998 1:30pm
solar shade up
fig. 081

sept. 02, 1998 1:30pm
solar shade down
fig. 082

psycholotecture...
solar study-04

dec. 02, 1998 9:45am
solar shade up
fig. 083

dec. 02, 1998 9:45am
solar shade down
fig. 084

dec. 02, 1998 1:30pm
solar shade up
fig. 085

dec. 02, 1998 1:30pm
solar shade down
fig. 086
psychoarchitecture...
psychology...
Psychology for Architects.

Good, Lawrence, and et al.
Illinois: Thomas.

Hyman, Jane Wegscheider
Institute for Mining and Minerals Research (IMMR).
Kentucky 1984.

Keyes, John.
New York: Morgan and Morgan
1975.

Keller, Rikard.
Studentlitteratur, 1975.

Lakeman, Sandra D.

Lam, William M.

Lambeth, James.

Lynes, J.A.

Moller, Clifford B.

Moir, John.
education \ɐˈkaːʃən\ n 1: the action or process of educating or being educated 2: a field of knowledge dealing with technical aspects of teaching.

Since the beginning of the thesis year many people have come along whose devotion to the field of architecture, and to the education of young architects, has helped and inspired me throughout my educational process. Without all of their knowledge, wisdom, understanding, influence, and sharing of experiences, this architectural thesis would not have been even remotely possible.

thank you all...
psycholotecture...