Epilogue
EPILOGUE

The urban fabric, the overlay system of the manmade and natural orders, can be utilized as a tool to develop a new understanding of the organizational principles and interrelationships that shape and manipulate the urban environment.

When examined, as a system of individual interdependent pieces, the urban fabric can expose Architectural issues that define a hierarchy of organizational principles and interrelationships. A designer can assess the issues in order to validate design decisions. Therefore, one must understand how to take advantage of those qualities in order to increase the range and level of response.

Responding to a particular set of conditions exposes issues that lead to the formulation of a truth - an idea. To transpose the implementatations an idea becomes an isolated meaningless imitation. To use in a constructive and comprehensible way, the study of the issues, principles and interrelationships must not be an ending point but should evoke a new level of issues and initiate avenues of exploration.
BIBLIOGRAPHY

THESIS INVENTORY

These issues are universal as an inventory and circumstantial as an assessment.

Urban Scale
 Urban Forces
 Landuse
 Urban Cohesiveness
 Figure/Ground
 Circulation Patterns
 Intersections
 Urban Image/Perception
 Overhead
 Ground Plain
 Surround
 Natural Features at City Scale
 Landforms
 Water Bodies
 Vegetation
 Natural Forces
 Urban Drainage
 Wind Paths
 Climate
 Solar Access
URBAN FORCES

- Identifies central business district
- Locates outer ring or expansion belt which incorporates new commercial development
- Illuminates transitional path from one destination point to another
- Indicates areas of importance, due to location, size and relationship with the major axis
LANDUSE

- Definition of role or service in community
- Identifies the diversity within the cities infrastructure
- Locates areas with a high density of use
- Illuminates results of zoning regulations
- Identifies work, recreational, living, business and undeveloped areas
- Historically depicts development
- Defines zones of uses

Key
- Commercial ■
- Residential □
- Park Areas □
- Schools □
- Industrial ■
- Undeveloped □
CIRCULATION PATTERN

- Identifies paths - vehicular
- Indicates hierarchy of movement
- Intensity of use
- City geometry
- Strong organizer patterns
- Violations of established orders
- Sub-structure of fabric
- Illuminates major axis
- Defines rhythm and repetition of organizing system
FIGURE/GROUND

- Study of mass and void
- Defines spatial patterns in a 2-D delineation
- Illuminates city planning process, changes and shifts in spatial patterns - circulation
- Identifies rhythms, mass, patterns, groupings
- Density, enclosure, open space, voids
- Fabric definition
- Gives new insights to circulation paths
- Identifies spatial hierarchy within city
- Urban spacial patterns
 Movement
 Association
 Assembly
- Destination points
- Transitional areas
- Historical analysis - used to discover developmental movements or progression of fabric decay
- Indicator of edge condition
COHESIVENESS

Fragmented
- Disorganized, lack of order
- Isolated conflicting forms and elements
- Lack of visual relief
- Fragmented landuses (abrupt changes)
- Lack of defined role in urban environment
- Visual fragmentation and confusion
- Lack of integral scales. Enclosure and edge definition
- Area of sporadic development

Cohesive
- Strong organization system
- Integrative manipulations of scale, enclosure and edge definition
- Identified role or service in community

Key
- Cohesive
- Fragmented
- Undeveloped
INTERSECTIONS

- Identifies major and minor axis
- Establishes rhythm and order of city organizer
- Distinguishes hierarchy of importance and usage
- Points of axis
URBAN IMAGE/VISUAL PERCEPTION

- Negative city image - strip development
- Overall a lack of enclosure
- Overhead
 - No sense of overhead
 - The occasional wire crossing is hardly noticed with everything else
 - Very few trees used as canopies
- Ground Plane
 - 3 lane highway
 - No visual relief
 - Lacking human scale
 - No manipulations
 - Lacks visual clarity
- Surround
 - The defined hard edge of utility poles is chaotic
 - Scale or surround is for the car, not people
 - Visual fragmentation adds to the confusion
 - No existing order
 - Hard edge could use some trees to soften it up

Intersection of Calumet and Evans Avenue
NATURAL FEATURES AT CITY SCALE

Landforms
The Valparaiso Moraine extends across the county in a north and northeasterly direction and divides the drainage areas north and south. South and east of the moraine are nearly level to gently sloping soils that drain south into the Kankakee River. North of the moraine are lacustrine or sandy, nearly level to steep soils that drain north into Lake Michigan. The majority of the land in Valparaiso is relatively flat.

Water Bodies
No water bodies exist in the urban structure.

Vegetation
- Vegetation is prevalent throughout
- Used to define enclosure
- Lack of vegetation occurs along strip developments
- Creates a human scale
- Enhances the soft-edge
NATURAL FORCES

Urban Drainage

Drainage Direction

Flood Areas

Urban Topography
NATURAL FORCES

Climate

Valparaiso has a temperate climate. It is cold and snowy in the winter and warm in the summer. Precipitation is well distributed during the year. In the winter the average temperature is 27 degrees F, and the average daily minimum is 19 degrees. The summer average temperature is 71 degrees and the average daily maximum temperature is 82 degrees. The total annual precipitation is 39.3 inches. Of this, 24 inches usually falls in April through September. Average snow fall is 47 inches. The average relative humidity in midafternoon is 65 percent and at dawn is 80 percent.

Wind Paths

Prevailing winds during the summer are from the south/southwest. During the winter, the winds from the north/northeast carry moisture from Lake Michigan. With the close proximity to Lake Michigan. The lake-effect snows are very common.

Solar Access

Due to the relatively flat geology of Valparaiso, solar access is not inhibited by any type of landform. The sun shines 70 percent of the time possible in summer and 45 percent in winter.
THESIS INVENTORY

These issues are universal as an inventory and circumstantial as an assessment.

Site Scale
 Visual Perceptions of Site
 Vehicular/Pedestrian Access
 Cohesiveness
 Noise Induction
 Contextual Landuse
 Existing Natural Features
 Landforms
 Water Formations
 Vegetations
 Natural Environmental Forces
 Orientation
 Summer/Winter Wind Paths
 Wind Shadows
 Solar Access
 Microclimates
 Site Drainage
 Soil Type/Characteristics
 Topography
VISUAL PERCEPTIONS OF SITE
VEHICULAR/PEDESTRIAN ACCESS

COHESIVENESS
SOIL TYPE/CHARACTERISTICS

BaA - Blount silt loam, 0 to 3 percent slopes this nearly level and gently sloping, deep, somewhat poorly drained soil is on glacial till plains in the uplands. Areas are irregularly shaped. They range from 3 to 60 acres but are dominantly about 20 acres.

In a typical profile, the surface layer is dark grayish brown silt loam about 11 inches thick. The subsoil is about 27 inches thick. The upper part is yellowish brown and grayish brown, mottled, firm silty clay loam and mottled, yellowish brown, gray, and light brownish gray, firm silty clay loam. The substratum is light olive brown silty clay loam to a depth of 60 inches. In places the combined surface layer and subsoil is more than 42 inches thick. In some areas there is less clay in the upper part of the profile than is typical.

Included with this soil in mapping are small areas of Pewamo soils in slight depressions and along drainageways and a few small, slightly elevated areas of
Morely soils. The included soils make up about 10 to 12 percent of the unit.

This Blount soil has moderate available water capacity and slow or moderately slow permeability. The organic matter content of the surface layer is moderate. Surface runoff is slow to medium. The surface layer is generally strongly acid unless limed. The soil has a seasonal high water table that is at a depth of 1 foot to 3 feet during winter and spring. The surface layer is friable and is easily tilled through a moderate range of moisture content.

Most of the acreage of this soil is used for cultivated crops. Some areas are used for hay and pasture, and other areas are used for trees.

This soil is suited to corn, soybeans, and small grain. Wetness is the main limitation in use and management. Row crops can be grown most of the time. This soil should not be worked when wet because of puddling. Subsurface drainage, conservation tillage, and the use of crop residue and cover crops help to improve and maintain tilth and content of organic matter.
This soil is well suited to grasses and legumes for hay or pasture if adequate drainage is provided. Deep rooted legumes such as alfalfa are not so well suited as shallow rooted legumes. If this soil is used for pasture, overgrazing and grazing when the soil is wet are the major concerns of management. Grazing when the soil is wet causes surface compaction and poor tilth. Overgrazing reduces plant density and plant hardiness. Proper stocking rates, rotational grazing, timely deferment of grazing, and restricted use during wet periods help to keep the pasture and soil in good condition.

This soil is suited to trees, but only a few areas are used for woodland. Seedling mortality and windthrow are severe hazards. Replanting of some seedlings may be needed. Seedlings survive and grow fairly well if competing vegetation is controlled. Unwanted trees and shrubs can be controlled or removed by site preparation or by spraying, cutting, or girdling.

This soil has severe limitations for building sites because of wetness. An adequate drainage system in combination with storm sewers is needed to satisfactorily lower the water table. Water moves slowly to drainage systems because of the slow or moderately slow permeability. Dwellings should be constructed without basements.

This soil has severe limitations for local roads and streets because of frost action and low strength. Drainage ditches along roads help to lower the water table and reduce the frost action potential. Strengthening the base material with sand and gravel or replacing the base with more suitable material helps to support vehicular traffic.

Limitations are severe for septic tank absorption fields because of wetness and the slow absorption of liquid waste.

This soil is in capability subclass llv and woodland suitability subclass 3.
PROCESS NARRATIVE

This segment depicts the conceptual development in graphic form. Selected sketches, drawings and photographs chronologically represent important turning points related to the thesis.
1. Amphitheater
2. Retail Shops
3. Market Area
4. Children's Theater
5. Children's Museum
6. Restaurant/Bar
7. Outdoor Eating Area