Determination of the Somatic Chromosome Number of *Polygonum tenue*

An Honors Thesis (ID 499)

By

Janice L. Bilby

Thesis Director

Dr. Thomas R. Mertens

Ball State University

Muncie, Indiana

May, 1978

Spring Quarter, 1978
Determination of the Somatic Chromosome Number of *Polygonum tenue*

Introduction

Plant taxonomists have disagreed for years concerning the section of genus *Polygonum* to which *P. tenue* should be assigned. Although the species has been traditionally assigned to genus *Polygonum*, section *Avicularia* (*Polygonum*), several researchers have proposed that *P. tenue* is actually a member of genus *Polygonum*, section *Duravia*. This proposal is based on the fact that several traits of *P. tenue* are contradictory to those characteristic of section *Avicularia* as a whole.

Hedberg (6) established the limits of genus *Polygonum*, section *Avicularia* on the basis of pollen morphology. This eliminated most North American species from section *Avicularia*, and placed them in section *Duravia*. Biosystematic studies done in the 1960s clarified the positions of several of those North American species assigned to section *Avicularia*. Styles (13) performed a detailed biosystematic study of section *Avicularia* in the British Isles which resulted in establishing species limits based on flower and achene characteristics. Styles also correlated these traits with plant habit, leaf characteristics, habitat, and chromosome number. Raven and Martens (9) found *P. tenue* to be morphologically similar to four other members of section *Avicularia* with respect to fruit and perianth characteristics, but found the pollen to be of the type found in plants of section *Duravia*.

1
An investigation by Savage and Mertens (11), using Styles' methods, revealed that \textit{P. tenue} had an achene stippling pattern dissimilar to that of achenes of other members of section \textit{Polygonum}.

Jones and Mertens (7) investigated the chromatographic patterns of free amino acids in members of section \textit{Avicularia}, including \textit{P. tenue}, and found that \textit{P. tenue} lacked a particular pink band characteristic of the other species studied. Brooks and Mertens (1), reporting on a similar study, also found \textit{P. tenue} to be lacking this band.

Attempts to determine the chromosome number of species in section \textit{Avicularia} have been made by several researchers. Several species in section \textit{Avicularia} have been reported to have somatic chromosome numbers of 2\(n=40\) or 2\(n=60\). Species with such chromosome numbers include \textit{P. erectum} (2\(n=40\)), \textit{P. arenarium} (2\(n=40\)), \textit{P. couchii} (2\(n=40\)), \textit{P. avicularia} (2\(n=60\)), \textit{P. macrocalyx} (2\(n=60\)), and \textit{P. maritima} (2\(n=60\)) (1, 9, 10, 13). Löve and Löve (8) reported the chromosome number of \textit{P. tenue} to be 2\(n=20\). However, Brooks and Mertens (1) found the somatic chromosome number of \textit{P. tenue} to be 2\(n=30\), which, along with pollen morphology and chromatographic data, cast doubts on the placement of \textit{P. tenue} in section \textit{Avicularia}.

The present investigation was performed in order to determine a definite somatic chromosome number for \textit{Polygonum tenue}, so that assignment of the species to an appropriate section of the genus \textit{Polygonum} could be suggested.

\textbf{Methods and Materials}

\textit{Polygonum tenue} specimens were collected on August 27 and October 2, 1977, at the same site near Rochester, in Fulton County, Indiana. The achenes gathered in October were the ones used for this experiment, since they were more mature.

The achenes were soaked in water for 24 hours, after which the pericarp was removed and the achene placed on moist filter paper in a petri dish.
The embryos were then refrigerated at 2-5 °C for at least two weeks, in order to cold shock the embryos. After the cold shock, the petri dishes were placed in an incubator at 23 °C until the germinated root tip was about 5 mm long. The root tips were then placed in a 0.002 molar solution of o-xyloquinolone for three hours to cause the chromosomes to contract. The root tips were fixed in a solution of two parts 95% ethyl alcohol to one part glacial acetic acid for fifteen minutes and left in the fixative until microscope preparations were made.

Staining was done with aceto-cresyl stain prepared by dissolving 1 gram of cresyl in 45 ml of hot glacial acetic acid and filtering the cooled solution. The stain was diluted at the time of use by putting 10 drops of distilled water in a watch glass and adding 10 drops of stain. After putting the root in the diluted stain, the solution was heated over an alcohol lamp until it boiled. The mixture was allowed to cool for one minute, then 5 drops of 1 molar hydrochloric acid were added, and the mixture heated to boiling again. A fresh drop of stain and a drop of distilled water were put on a slide, and the root tip transferred to the slide. The last 1 mm of the root tip was removed with a clean razor blade, and the rest of the root discarded. A cover slip was placed over the root tip, and the root tip cells separated by tapping the cover slip gently with a dissecting needle while watching through a dissecting microscope. The slide was then inverted on a paper towel on a glass plate, and the area over the cover slip was rubbed with the handle of a dissecting needle to squash the cells, rupture the nuclear membrane, and flatten the chromosomes. The slide was examined under a phase contrast microscope with a low power objective giving total magnification of 200x; when a cell with chromosomes was found, it was studied using the oil immersion objective at 1000x total magnification.
One cell was photographed using a Kodak 35 mm back and Kodak photomicrography color film 2483. The cell was under the 100x oil objective, with a zoom factor of 1.2, giving a total magnification of 1200x. Exposure time was 50 seconds with the light at maximum intensity and using phase contrast optics.

Data and Discussion

Definite chromosome counts were obtained for Polygonum tenue from two seeds:

Somatic count of 34 (Figure 1).

Somatic count of 34 (Figures 2, 3).

Photographs were taken and diagrammatic line drawings made in order to show the chromosomes as they appeared in the cells.

Obtaining root tips for squashes was difficult for several reasons. Mold often grew on the seeds, making those root tips unusable; many seeds simply did not germinate at all; and of those seeds that did germinate, many root tips were not growing fast enough to have many cells dividing, thus making it difficult to find cells with chromosomes. Many of the cells with chromosomes visible did not have the nuclear membranes ruptured, so that the chromosomes were not spread apart sufficiently, or else the chromosomes were not flattened enough, also making it impossible to make an accurate count.

Several keys have been constructed for P. tenue, all of which include it in section Avicularia. Of these keys, the most recent is one by Savage and Mertens (11), which uses achene characteristics to position the different species of section Avicularia. Savage and Mertens included P. tenue in the key for section Avicularia for convenience, although they felt that P. tenue belonged in section Duravia. Their key is as follows:

Achene surface predominantly smooth and shiny but may have stippled or striated edges; inflorescences appear to be terminal, the flowers being more-or-less clustered at the ends of stems among reduced leaves
Figure 1. Diagrammatic line drawing of cell of Polygonum tenue. Chromosome number $2n=34$ (1200x magnification).

Figure 2. Diagrammatic line drawing of cell of Polygonum tenue. Chromosome number $2n=34$ (1200x magnification).
Figure 3. Photograph of chromosomes of cell of Polygonum tenue, as shown in Figure 2. Chromosome number $2n=34$ (1200x magnification).
or bracts; perianth tightly oppressed to the achene, which has three equal concave sides.

Each face of black, trigonous achene is smooth and shiny but bordered with striated or stippled margin; plant slender, stiff or wiry; leaves linear

\[P. \text{tenue} \]

Savage and Mertens (11) also described the habitat of the plant, finding it sandy and hilly (Figures 4, 5). The key by Correll and Johnston (2) deals with \(P. \text{tenue} \) in the same manner as does that by Savage and Mertens. Keys by other authors, however, use different characteristics. Dean (3) developed a key which differentiates \(P. \text{tenue} \) on the basis of the stem and branches (strongly angled and erect) and the leaves (linear, sharply pointed, minutely ciliolate). Dean (3) also described the habitat of \(P. \text{tenue} \), observing that this species prefers slightly acid soil, and is found in exposed areas where few or no other plants are growing (Figures 4, 5).

Fernald (4) uses the same stem and branch traits as does Dean, but also uses the terminal inflorescence position, plicate leaves, and erect flowers to describe \(P. \text{tenue} \). Gleason (5) keys \(P. \text{tenue} \) in the same manner Fernald does; however, pedicel traits and the serration of leaves are also used by Gleason in his key for \(P. \text{tenue} \). A key by Small (12) uses the following traits to separate \(P. \text{tenue} \) from the other species in section \(\text{Avicularia} \):

- plants erect; achenes included, never completely exerted; flowers in axillary clusters; stem branched mainly from the base; branches erect or ascending; small plants; pedicels erect; leaves linear or linear-lanceolate; achenes ovoid. The general morphological descriptions of \(P. \text{tenue} \) by all authors do not vary greatly. Unfortunately, none of the descriptions or keys for section \(\text{Avicularia} \) which include \(P. \text{tenue} \) also include chromatographic data or chromosome numbers for the species involved. Tutin, et al. (14) do, however, use chromosome numbers in their descriptions of \(\text{Polygala} \) spp. which are found in Europe and assigned to section \(\text{Avicularia} \). This, however, does not help in assigning \(P. \text{tenue} \) to a particular section, since the species
Figure 4. Photograph of Polygonum Tenue.
Figure 5. Photograph of *Polygonum tenue*, as found at site of collection near Rochester, Fulton Co., Indiana.
is found only in North America.

Differences between sections *Avicularia* and *Duravia* are described mostly by Hedberg and Small. Hedberg (6) found that sections *Duravia* and *Avicularia* could be differentiated on the basis of their pollen, although there were some species in section *Duravia* whose pollen grains were very similar to grains of species in section *Avicularia*. *Duravia*-type pollen differed from *Avicularia*-type pollen in the following respects: 1) the pollen grains in section *Duravia* were always tricolporate, while section *Avicularia* pollen grains could be tri- or tetracolporate or hexaraprate; 2) the furrow length in section *Duravia* was shorter than that of section *Avicularia*, section *Duravia* having a furrow length no longer than one-half the polar axis, while furrows in pollen in section *Avicularia* were from one-half to four-fifths the length of the polar axis; and 3) section *Duravia* pollen was found only in plants from the New World, while section *Avicularia* pollen was found in plants from most parts of the world.

Small (12) described the morphology of plants assigned to sections *Avicularia* and *Duravia*. He found the plants in the two sections to be very similar morphologically; the major differences between the two sections were 1) in section *Duravia*, the leaves were not articulated to the ocrea, but were more or less articulated in section *Avicularia*; 2) the calyx in section *Duravia* was five-parted, but could be five- or six-parted in section *Avicularia*; and 3) species in section *Duravia* usually had eight stamens, but species in section *Avicularia* had from three to eight stamens. Small placed several species in section *Avicularia* which Hedberg placed in section *Duravia* on the basis of pollen type, including *P. minimum*, *P. douglasii*, *P. engelmannii*, *P. austinae*, *P. spenceriaeforme*, *P. mutiellii*, *P. polyvaloides*, *P. watsoni*, *P. kelloggi*, and *P. sawatchense* (6, 12). Although Small placed
the above species, as well as *P. tenue*, in section *Avicularia*, his descriptions of all the species in question permit assignment of these species to section *Duravia* as he described the section (12). The more recent keys and descriptions mentioned above also permit assignment of *P. tenue* to section *Duravia*.

There is still need for work on the taxonomy of genus *Polygonum*. An attempt should be made to gather chromatographic data and chromosome numbers for as many of the species currently assigned to sections *Avicularia* and *Duravia* as possible, in order to determine which species belong to section *Avicularia* and which belong in section *Duravia*; such information would also help to determine whether there is a need to subdivide the genus at all.

Conclusions

1) The somatic chromosome number of *P. tenue* is 2n=34.

2) The chromosome number, pollen morphology, chromatographic data, and general morphology of the plant suggest that *P. tenue* should be assigned to section *Duravia* of genus *Polygonum*.

3) Further investigation of chromosome numbers and chromatographic data of species whose taxonomic position in genus *Polygonum* is disputed (*P. douglasii*, *P. watsoni*, etc.) should be done in an effort to clarify the position of these species in genus *Polygonum*.

4) The writer recommends that section *Duravia* should be separated from section *Avicularia* and that a description of the former section be made on the basis of the general morphology of those plants whose pollen is of the *Duravia* type as described by Hedberg.
Literature Cited

