The synthesis and study of a phosphine functionalized crown ether

No Thumbnail Available
Authors
Keefer, Chad D.
Advisor
Storhoff, Bruce N.
Issue Date
2005
Keyword
Degree
Thesis (D. Ed.)
Department
Department of Chemistry
Other Identifiers
Abstract

This study has resulted in a phosphine funetionalized crown ether. synrdiQ-methoxy-5-diphenylphosphino-1.3-cplyl l-24-crown-6, obtained tkmt a live step synthesis. 4-13romophenol was treated in turn with formaldehyde. di methyl sulfate, and phosphorous trihromide. producing 4-bromo-2.6-his(bromomethyl )anisole. The key intermediate. spm-di(2-methoz}-5-bromo-I.3-z( I).l )-24-crown-6. was obtained from treating 4-hromo-3.6-bis(bromomethyl )anisole with diethylenc glycol and potassium thutoyide. The potassium ion apparently provided a template to assist the formation of the product. SLm-di(2-methosp-5-diphenylphosphino- I.3-x lyl )-24-crown-6 was obtained from treating sm-di(2-methos5-5-hromo-I.3-x'kI -24-crown-6 in sequence with n-BuLi and methyldiphern I phosphinite. The nP NMR of the phosphine crown ether showed a single signal at 6 -5.35 ppm. consistent with the formation of a single product.The'1I NMR of the phosphine crown ether in chloroform-d showed signals at6354-3.56 (crown CIF). 3.61 I OCI I;I. 4.44 (benzylic Cl I.6 and 7.25-7.29 (aromatic Ii) ppm.The integrated areas were consistent with the formula. The `C NNIR of the phosphine crown ether in chloroform-d displaced signals at 6 63.1, 68.5. 70.0. 70.1. 128.5 and 128.6 (d). 128.7. 131.8 and 131.9 (d), 132.0. 133.6 and 133.7 (d). 136.1 and 136.4 (d). 137.4 and 137.5 (dl, and 158.4 ppm. The "C signals were consistent with the formula and structure. The br)minated crown ether was characterized with 'I I and ''C NMR. as well as X-ray crystallography and elemental analysis.