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 ABSTRACT. Five Etheostoma darter species including the greenside darter (E. 

blennioides), rainbow darter (E. caeruleum), fantail darter (E. flabellare), johnny darter (E. 

nigrum), and orangethroat darter (E. spectabile) were collected from seven streams and rivers in 

two Indiana watersheds to determine patterns of microhabitat selection with respect to depth, 

water velocity (flow), and substrate size. Greenside and rainbow darters were most commonly 

found among intermediate substrate sizes (cobble-boulder) and locations with higher velocities 

and greater depths. Fantail and orangethroat darters associated with intermediate to large 

substrate sizes (cobble-bedrock) in shallower average depths and lower velocities. Fantail darters 

were only observed in the Whitewater River watershed. In contrast, johnny darters were observed 

only within the Upper White River watershed among small substrate sizes (silt-sand), moderate 

velocities, and increased depths. Substrate size was the most important variable in characterizing 

microhabitat selection as shown using nonmetric multidimensional scaling (NMS) and 

multinomial logistic regression. Patterns of microhabitat use are likely influenced by competition, 

morphology and other life history traits, and may explain the existence of congeneric species in 

ecosystems having heterogeneous habitats. Ultimately, these segregational patterns, whether 
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induced by spatial or resource-based competition, allow for the coexistence of benthic fish 

species.  

 

INTRODUCTION 

 The group of fishes commonly known as darters is a highly diverse assemblage of 

benthic stream vertebrates. The genus Etheostoma is the most diverse group of darters 

(Page and Burr, 1991) in North America, many of which occur sympatrically in localized 

benthic communities (Etiner and Starnes, 1993; Knouft, 2003). These species are benthic 

insectivores (Adamson and Wissing, 1977; Schlosser and Toth, 1984) rarely exceeding 8 

cm in total length (Trautman, 1981; Pflieger, 1997). Despite their relatively small size, 

darters have been shown to be important in structuring stream communities (Winn, 1958) 

and can be indicators of stream diversity and integrity (Simon and Lyons, 1995). A 

number of studies have been directed at diet (Forbes, 1880; Turner, 1921; Mathur, 1973; 

Adamson and Wissing, 1977; Cordes and Page, 1980), microhabitat use (Paine et al., 

1982; Chipps et al., 1994; Kessler et al., 1995; Stauffer et al., 1996; Welsh and Perry, 

1998), and other life history characters such as resource partitioning and morphology 

(Schoener, 1974; Schlosser and Toth, 1984; Guill et al., 2003). However, limited 

information exists on patterns of microhabitat use within Midwestern streams where 

species diversity and abundance is typically lower (Kuehne and Barbour, 1983; Page, 

1983) when compared to Appalachia (Chipps et al., 1994; Stauffer et al., 1996; Welsh 

and Perry, 1998; Skyfield and Grossman, 2008) and large portions of the southeastern 

United States (Henry and Grossman, 2008). Ecological interactions among stream 
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assemblages, particularly with species in the genus Etheostoma, have been of long 

importance to researchers in the effort to understand the complexities involved in 

maintaining a sustainable and healthy ecosystem. 

 Defining the subtleties of microhabitat use by darters will enhance our 

understanding of negative anthropogenic impacts, leading to protection or enhancement 

of these habitats and fishes (Rosenfeld, 2003). This is particularly true in Indiana and 

parts of the Midwest, as a plethora of streams and their riparian corridors have been 

physically altered (e.g., channelized or cleared) in association with agricultural needs 

(Gammon, 1998; Hortle and Lake, 1983; Poff et al. 1997). Moreover, published 

information on Indiana streams has focused on stream development and degradation (Lau 

et al., 2005; Moerke and Lamberti, 2004), rather than organismal ecology, such as habitat 

use by aquatic life (Cain et al., 2008). Because Etheostoma darters are benthic, they may 

provide a better glimpse into the negative impacts of habitat modification and 

degradation associated with depth, water velocity (i.e., flow), and substrate. For example, 

coarse substrate may provide cover, foraging areas, and spawning grounds for lithophilic 

species, like many darters, but substrates effectively become destroyed by siltation and 

sedimentation, clogging the interstitial areas where these behaviors typically occur (Bain, 

1999). Therefore, an absence or decline of these species could indicate some form of 

degradation has occurred, suggesting a need to implement protection or restoration 

activities.   

 Habitat selection on any scale contributes to construction of aquatic and terrestrial 

communities, laying the foundation of all ecological interactions among species and 

overall community dynamic (Resetarits, 2005). There are various theories behind habitat 
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selection in sympatric darter species with most emphasis on competitive interactions 

(both intra- and inter-specific; Schoener, 1974), morphological features (Guill et al., 

2003; Knouft, 2003), predator avoidance (Taylor, 1996), and those of a dynamic nature 

such as flow regime, temperature, and disturbance (Menge and Sutherland, 1976; 

Schlosser and Toth, 1984). Few have addressed patterns of microhabitat use across 

regions that are known to differ in habitat availability and heterogeneity (Welsh and 

Perry, 1998). Therefore, the objectives of this study were to define microhabitat use of 

sympatric darter species found in two distinct watersheds and determine which 

microhabitat-use variables (depth, flow, and substrate composition) were most influential 

in segregating species. In addition, we evaluated whether habitat differences between 

watersheds were driving factors in darter habitat selection.  

 

METHODS 

 Study sites— Fishes and discharge were collected/measured from nine sites on 

seven streams/rivers in the Upper White River (Delaware County) and Whitewater River 

(Franklin County) watersheds, Indiana (Fig.1). Study sites were chosen on accessibility 

and the distributional range of five abundant darter species (Page, 1983): greenside darter 

(E. blennioides), rainbow darter (E. caeruleum), fantail darter (E. flabellare), johnny 

darter (E. nigrum), and orangethroat darter (E. spectabile). Land use and ecoregion type 

differed between the watersheds (Homoya et al., 1985). Streams selected within the 

Upper White River watershed were influenced by agriculture, channelization, and 

urbanization, and composed primarily of long runs with few riffles and pools. Streams 

chosen in the Whitewater River watershed were primarily surrounded by forested or field 
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riparian areas, providing more extensive instream cover, and were minimally influenced 

by agriculture and channelization, typically retaining their natural sinuosity and character. 

All streams sampled (Table 1) were classified (Horton, 1945) as 1
st
 or 2

nd
 order, with the 

exception of the White River (4
th
 order). Sampling took place during average to below 

daily median flow volumes as measured by the nearest United States Geological Survey 

real-time stream flow gauging stations.  

  Fish collection—Darters were collected from July to mid-September 2008 using 

standard backpack dc electrofishing (Smith-Root Model LR-24, Vancouver WA). 

Collection length in each stream was 15 times the wetted width of the stream and 

included at least one riffle, run, and pool segment. The location of a darter collected was 

marked using color-coded weights corresponding to each species (N = 5) during 

electrofishing. Each weight was affixed with a 20 cm portion of nylon string so that 

weights could easily be found. These instream markers denoted the exact stream location 

of individual fish collections for subsequent microhabitat assessment. All fishes were 

identified and enumerated. 

 Habitat analysis— To characterize general habitat characteristics and surrounding 

land use at each sample site, an assessment using the Qualitative Habitat Evaluation 

Index (QHEI) (Rankin, 1989) was performed. This assessment differentiated stream 

habitat characteristics among sites, specifically substrate, that aided in the explanation of 

darter microhabitat use. Although the QHEI is a composite score for habitat quality, the 

individual metrics have also been correlated to use and selection by fish taxa (Cain et al. 

2008).  
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 We measured stream discharge (cm/s) and width (m) prior to fish sampling. 

Current velocity (flow) was measured using an analog flow meter (Model 201 Portable 

Water Current Meter, Marsh-McBirney) at 60% of the total depth (McMahon, et al., 

1996) with depth measurements taken using a staff marked in centimeters.  

Following electrofishing, we measured flow (m/s), depth (m), and % substrate 

size at each darter collection location. Darters can be found within the interstitial regions 

and crevices created by aggregations of larger substrate types and obtaining accurate 

measurements of flow in these areas can prove difficult (Stauffer et al., 1996). To address 

this issue and standardize the collection effort, flow measurements were taken 

approximately 3 cm above the substrate. Substrate composition was measured using a 

1x1-m square PVC pipe frame centered over each colored marker to visually observe 

percentages of available substrate size classes (Chipps et al., 1994). A modified 

Wentworth Scale (Cummins, 1962) was used in this study as size classes of substrate 

were visually estimated on site and included: silt (< 1 mm), sand (> 1-3 mm), gravel (> 3-

20 mm), cobble (> 20-250 mm), boulder (> 250-1000 mm), and bedrock (> 1000 mm-

embedded layers) (Greenberg, 1991). Darter location relative to the substrate (on top, 

within, or beneath) was not recorded as electrofishing likely disturbed their initial vertical 

positioning.  

  Statistical Analysis—Habitat features at each site based on QHEI metrics were 

compared using Principal Components Analysis (PCA; Minitab version 15). Only the 

first three components with Eigen values greater than one were reported. Analysis of 

variance (ANOVA) and Tukey-Kramer multiple comparison tests were performed on 

each PCA axis to further explain habitat structure. Microhabitat use among the five 
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species and variables important in segregation were determined using nonmetric 

multidimensional scaling (NMS) multivariate analysis (PC-ORD; McCune and Grace, 

2002). This non-parametric ordination procedure iteratively finds a solution so that the 

distances of data points reflect the ranking order of the data (Holland, 2008).  ANOVA 

and Tukey-Kramer multiple comparisons was used as a post-hoc analysis of each NMS 

axis. Percent substrate was arcsine-square-root transformed prior to the analysis and α = 

0.05 was used for all analyses. 

A third analysis, multinomial logistic regression (MLR) related patterns of darter 

microhabitat use to a reference category (MLR; SPSS version 16). In this test, habitat use 

by orangethroat, fantail, rainbow, and johnny darters were individually compared to 

greenside darters, the reference category. Greenside darters were chosen as the reference 

category as they were found in both watersheds and were highest in abundance. The 

multinomial logistic regression generates a slope that indicates the direction and strength 

of the relationship between the reference category and its comparisons. For example, if a 

species generated a positive slope relationship to the greenside darter based on flow, it 

would suggest this species is associated with higher flow. A significant negative slope 

would imply the test species would be associated with lower flow. The greenside darter 

was compared to the other four species on all three microhabitat variables for a total of 12 

comparisons. 

RESULTS 

 A total of 278 darters was collected from the nine sites in 2008 (Table 2). 

Greenside and rainbow darters were highest in abundance (N = 95 and 88, respectively), 

and were collected in both watersheds. Orangethroat darters occurred in both watersheds, 
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but in low abundance (N = 31). The least abundant fish (N = 23) were fantail darters, 

collected only in the Whitewater River watershed while johnny darters were also low in 

abundance (N = 41) and only collected in the Upper White River watershed. There were 

no sites during the sampling period in which all five study species were present. Other 

Etheostoma and Percina species, such as the banded darter (E. zonale), blackside darter 

(P. maculata), and logperch (P. caprodes), were occasionally collected but were in low 

abundance and not included in analyses. Non-darter species occurring in high abundance 

at sites were creek chub, Semotilus atromaculatus, blacknose dace, Rhinichthys obtusus, 

bluntnose minnow, Pimephales notatus, white sucker, Catostomus commersoni, and 

green sunfish, Lepomis cyanellus.  

 Habitat differences by watershed — The QHEI scores ranged from 51-71 within 

the Upper White River watershed, (fair-excellent), while in the Whitewater River 

watershed scores ranged from 78-85 (excellent) (Ohio EPA, 2006). Sites located in the 

Upper White River watershed were characterized by a higher gradient and higher 

pool/glide quality (more pools/glides). In contrast, Whitewater River watershed streams 

were characterized by increased instream cover, a greater range of substrate types, and 

more stable riparian zones and channels (Figures 2 and 3). However, only loadings of the 

PC1 axis were significantly different between the watersheds (ANOVA: F1,7 = 10.38, P = 

0.015). The Whitewater River watershed was characterized by higher percentages (Table 

3) of the “best types” category of substrate (ANOVA: F1,7 = 5.73, P = 0.048) and streams 

with a more natural channel morphologies (ANOVA: F1,7 = 26.81, P < 0.001). While 

sites in the Upper White River watershed were characterized by increased silt/sand and 

were negatively influenced by channelization effects than sites in the Whitewater River 
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watershed, the two watersheds contained similar dominant substrates (cobble-bedrock); 

although in varying amounts.  

 The six QHEI substrate sub-categories also varied between watersheds. Greater 

percentages of cobble and gravel were found in the Whitewater River watershed, while 

the Upper White River watershed had increased percentages of sand (Table 4). Boulder 

and bedrock substrates were present in streams of both watersheds; however, these were 

the primary substrates of Harvey’s Branch located in the Whitewater River watershed. 

The predominant substrates of steams in the Whitewater River watershed were larger, 

with little sand or silt (Table 1).   

 Microhabitat selection by species—In general, all species selected specific 

microhabitat types, based primarily on substrate type. The NMS analysis resulted in a 

final stress of 11.0 using a total of three dimensions, which was significantly lower than 

the stress level generated by 20 Monte Carlo randomizations (P = 0.48). The NMS 

ordination of the first two axes resulted in species on the right side of NMS1 to be 

characterized by medium-sized substrates, such as cobble, and differed from the other 

species on the left, who were characterized by larger (bedrock) and smaller (sand) 

substrate types (ANOVA: F4,273 = 7.5, P < 0.001; NMS1) (Fig. 4). Specifically, 

greenside, orangethroat, and rainbow darters were characterized by cobble-boulder 

substrates, fantail darters by bedrock, and johnny darters by sand. The second NMS axis 

resulted in the separation of fantail and johnny darters, where fantail darters were 

characterized by larger substrates than johnny darters (ANOVA: F4,273 = 14.4, P < 0.001; 

NMS2) (Fig. 4). A second NMS ordination, including a third axis (NMS3), also resulted 
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in the separation of the fantail from the johnny darter based on substrate size (ANOVA: 

F4, 273 = 6.2, P <0.001; NMS3) (Fig. 5).  

 In the Upper White River watershed, the NMS ordination of the first two axes 

resulted in species (greenside and rainbow darters) on the bottom to be characterized by 

cobble-bedrock substrate while those on the top (johnny and orangethroat) to be 

characterized by sand-cobble substrate. (ANOVA: F3,207 = 17.2, P < 0.001; NMS2) 

(Fig.6). Johnny darters were also characterized by more silt and greater depths than the 

remaining species. In the Whitewater River watershed, rainbow darters, found mostly on 

the top of NMS2 (Fig. 7), were characterized by higher current velocity and greater water 

depth than the remaining species (ANOVA: F3,63 = 3.4, P = 0.03; NMS2). Fantail darters 

were also characterized by larger substrates in the Whitewater River watershed than the 

remaining species. 

 Greenside, orangethroat, and rainbow darters occurred in both watersheds and 

showed similar preferences for substrate selection. A NMS ordination of the first two 

axes resulted in low separation of species found in both watersheds (Fig. 8). All three 

species were characterized by similar substrates, regardless of watershed.  For example, 

the rainbow darter was characterized by cobble at sites in the Upper White River 

watershed and the Whitewater River watershed counties.    

 Lastly, when the greenside darter was used as the “standard” in the multinomial 

regression analysis, the remaining four darters showed differing habitat selection patterns 

(Table 5). All four species preferred decreased current velocity (negative slope).  Fantail 

and orangethroat darters additionally preferred shallower water depth when compared to 

greenside darters (negative slope) while rainbow and johnny darters water depth 
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preference did not differ. Fantail darters occurred with larger sized substrate and johnny 

darters occurred with smaller sized substrate than greenside darters. Rainbow and 

orangethroat darters occurred with similar substrate sizes as greenside darters. 

 

DISCUSSION 

 Our findings demonstrated that microhabitat preferences differed among 

greenside, johnny, orangethroat, rainbow, and fantail darters. These differences were not 

individual habitat parameters, but rather, combinations of flow, depth, and substrate. 

Niche theory suggests that species should separate by at least one microhabitat variable  

to coexist (Vandermeer, 1972). It was possible to use a single microhabitat parameter 

(e.g., substrate) to separate two species from each other (e.g., greenside and fantail), but 

using a single habitat parameter may limit analysis, conclusions, and inference. In 

addition, the three species that were found in both watersheds (greenside, rainbow, and 

orangethroat darters) had similar intraspecific microhabitat preferences in both 

watersheds, suggesting habitat fidelity for individual species, regardless of location. 

These findings suggest that microhabitat use may largely depend on the presence of 

congeners, as competition can create habitat displacement of ecologically similar species 

of darters (White and Aspinwall, 1983).  Niche partitioning was evident, with substrate 

most influential, followed by flow and depth. Flow, depth, and substrate can covary with 

one another depending on factors such as local hydrology and available sediments which 

construct substrate composition within a stream (Bain et al., 1988). For example, 

different patterns of substrate deposition in riffles and pools can create varying depths, 

creating a correlation between both depth and substrate.  
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 Patterns of overlap in microhabitat use were observed between one or more 

species and can be explained by several factors. First, during periods of low flow (which 

was seen at each site), fish have been known to seek out alternate microhabitats to 

compensate for changes in behavior, competition, and reproduction of sympatric species 

(Hlohowskyj and Wissing, 1986; Harding et al., 1998). In some cases where drought is 

severe or in intermittent/ephemeral streams, fish may congregate in pools, where they can 

become isolated from other species (as in the case of fantail and orangethroat darters in 

the Whitewater River watershed). Second, species may show high overlap (such as 

greenside and rainbow darters in both watersheds) simply because of no limitation to 

habitat. Most of the sites sampled contained the intermediate substrates that contained 

large amounts of these two species. Lastly, an over-abundance of resources places no 

threat on another species ability to occupy the same niche (resource sharing), as described 

by niche overlap (Pianka, 1974). 

 Segregation was also observed in the study, based primarily on substrate use. 

Many darter species are dependent  upon substrate composition as it provides a means of 

cover from predation and fluctuations in flow events, as well as foraging and spawning 

habitat (Schlosser and Toth, 1984; Hlohowskyj and Wissing, 1986; Welsh and Perry, 

1998). For instance, both fantail and johnny darters require the undersides of cobbles and 

boulders to deposit eggs while greenside and rainbow darters scrape food items from the 

surface of rocks (Winn, 1958). Because Etheostoma darters are benthic in nature, they are 

likely to be highly influenced by the type, availability, and composition of substrate 

(Hlohowskyj and Wissing, 1986). Taxa that require substrate for feeding or reproduction 

may partition substrate in a manner so that the stress of competition is reduced. While 
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flow and depth were of minimal influence in segregating these species in this study (most 

likely due to minimal rainfall), these parameters are of upmost importance in determining 

how darters partition substrate within the stream community (Englert and Seghers, 1983). 

In Pipe Creek (Whitewater River watershed), both greenside and fantail darters were 

found over cobble-boulder substrates. However, greenside darters were located in faster, 

deeper flows primarily in the middle of riffles while fantail darters were at the base of the 

riffles where flow and depth were minimal. Similar results were obtained by Wehnes 

(1973), demonstrating that while substrate may be the basis of microhabitat partitioning, 

both flow and depth segregate similar species one step further.  

  Patterns of segregation, like that of overlap, can be explained by several factors. 

First, darter species may behaviorally segregate from other species, such as for 

reproduction. All five species in this study possess different methods of reproduction. 

Greenside darters need vegetation, johnny and fantail darters use the underside of 

cobbles, and rainbow and orangethroat are egg buriers (Page, 1982). Second, there may 

be increased competition for food and space, therefore driving out one or more other 

species to alternate microhabitats (Grossman and Freeman, 1987). Rainbow darters are 

generally associated with riffle areas among medium-large sized substrates (Page, 1983). 

However, in Pipe Creek (Whitewater River watershed), the rainbow darter segregated 

from other species into pools with reduced flow and greater depth, perhaps seeking an 

alternate microhabitat. Lastly, although only adults were measured in this study, darters 

and other fish are known to inhabit different microhabitat types based on their life-stage 

(Page, 1983; Porter and Rosenfeld, 1999). Juveniles typically use different microhabitats 

than their adult counterparts because of size and differences in feeding.  
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 Although there were differences in microhabitat use between species and species 

pairs, three species demonstrated habitat fidelity among all sites (where observed). Small 

stream fishes, like darters, are well known to be habitat specialists (Gorman and Karr, 

1978). Greenside, rainbow, and orangethroat darters in this study occupied similar 

microhabitats despite regional watershed differences and overall habitat complexity. 

Comparable results have been obtained from other studies testing for microhabitat 

selection of darters. Chipps et al. (1994) found that the finescale saddled darter 

(Etheostoma osburni) and fantail darter spatially segregated from one another by flow 

and substrate at one site and separated by flow, substrate, and depth at another, but 

individual preference for substrate type did not change between sites. A possible 

explanation to this habitat fidelity shown by the greenside, rainbow, and orangethroat 

darters in my study is substrate consistency. Minimal changes in flow during this 

observation period within both watersheds may explain why substrate composition 

remained consistent, as substrate composition has been known to change from extreme 

alterations in velocity (Grossman et al., 1995).  Silt and sand substrate characterized the 

Upper White River watershed; however, both watersheds contained similar available 

substrates. Greenside, rainbow, and orangethroat darters used gravel-boulder (at most 

sites) in both watersheds. The only exception to this was the orangethroat darter’s usage 

of bedrock at two of the three sites in the Whitewater River watershed, where they had 

been forced into pools with low flow. From an ecological perspective, species may have 

used similar microhabitats in both watersheds because there are no immediate threats to 

their ability to feed and forage. 
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 Although macro-habitat metrics between the two watersheds were different as 

indicated by the QHEI, the QHEI did not significantly explain differences in microhabitat 

parameters. This index was developed to explain differences in habitat that fishes use at a 

reach or stream scale (Rankin, 1989) and it may be too coarse to explain microhabitat 

differences in flow, depth, and substrate composition (Cain, 2008). However, the QHEI 

did provide a better understanding of the variation in habitat that was found between the 

watersheds. Sites sampled in the Upper White River watershed had been subjected to 

channelization, while those in the Whitewater River watershed retained natural sinuosity. 

Channelization practices displace fine sediments such as silt and sand and may explain 

why sites in the Upper White River watershed contained large amounts of these fine 

substrates in contrast to sites in the Whitewater River watershed. Although the QHEI was 

not very useful in helping to identify differences in microhabitat, its application to larger 

scale projects may provide greater insights into stream or watershed management.  

 Microhabitat selection of the five darters deviate from other published accounts 

on these species. Greenside and rainbow darters overlapped on substrate use, in contrast 

to Welsh and Perry (1998), who found these species were spatially segregated in stream 

run segments, with greenside darters preferring shallower and slower microhabitats 

composed of larger substrate. One explanation of contradicting results may be the role of 

seasonality in patterns of microhabitat use, as both greenside and rainbow darters 

inhabited similar microhabitats in certain months than in others (Stauffer et al., 1996). 

The analogous use of microhabitat by the greenside and rainbow darters may also be due 

in part to the extensive distribution and abundance of these species in the Midwest 

(Kuehne and Barbour, 1983).  
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 Fantail and orangethroat darters exhibited medium-low overlap in microhabitat 

selection within the Whitewater River watershed. Both of these species differ along many 

ecological factors including morphology and reproductive/feeding behaviors (Kuehne 

and Barbour, 1983; Page, 1983). Fantail darters are extremely flexible, typically 

occupying interstitial regions of intermediate-large substrates for both feeding and 

depositing eggs (underside of rocks) (Winn, 1958; Page, 1983). In contrast, orangethroat 

darters have a more rigid body, occupying sand-cobble habitats (Page, 1983). In this 

study, these species may have been restricted to more upstream portions where flow and 

depth had diminished and became isolated from other species. Overlap was also recorded 

for johnny and orangethroat darters in the Upper White River watershed, where both 

selected sandy substrates (principally at Bell Creek and Killbuck Creek site 2). This is not 

uncommon, as both species can be found in streams containing high amounts of silt and 

sand and lowered water quality (Kuehne and Barbour, 1983).  

 There was an absence of fantail darters in the Upper White River watershed and 

johnny darters in the Whitewater River watershed. According to distribution maps, these 

two species share an extensive and overlapping range throughout the Midwest (Gerking, 

1945; Kuehne and Barbour, 1983; Page, 1983). Their absence from sites in this study 

may be explained by each species’ strict preference to use specific substrates which were 

either too low or unavailable at sites within both watersheds. Killbuck Creek sites 1 and 

2, Upper White River watershed, contained a high amount (50-100% of available 

substrate based on QHEI) of sand preferred by that of the johnny darter, while streams in 

the Whitewater River watershed contained virtually no sandy reaches (< 10%). Johnny 

darters can be found in the larger, main stem of the Whitewater River Drainage (Gerking, 
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1945; Brant Fisher, pers. comm., 2010) of Franklin County, Indiana, but may have 

simply not migrated up into the smaller first order tributaries of this watershed. However, 

both watersheds contained a suitable amount of cobble-bedrock preferred by the fantail 

darter. Fantail darters in the Upper White River watershed may have either not existed at 

the particular sites sampled or were in low abundance due to high embeddedness of 

substrate and clogging of interstitial regions with sediment/algae where these species are 

often found (Schlosser and Toth, 1984).  

  Patterns of segregation of coexisting darters may provide a glimpse into 

evolutionary processes such as adaptation, migration, and competition. The stable 

structure of benthic assemblages may be due in part to the ability of many darters to 

coexist with one another, even when habitat availability and resources are limited. Some 

of the more ubiquitous Etheostoma darter species such as the greenside darter and 

rainbow darter showed little or no segregation from one another (with the exception of 

hydrological fluctuations and other abiotic forces), therefore indicating strong patterns of 

sympatry (Knouft, 2003).  

 The need to integrate stream management and conservation of stream fishes stem 

directly from the recognition and awareness of patterns of microhabitat use, (Skyfield and 

Grossman, 2008), as many have become imperiled or even extirpated (Warren et al. 

2000). This is particularly true of many darter species, as alterations of habitat from 

human development continue on such a large scale across the Midwest (Gammon, 1998; 

Lau, 2006). A large portion of Indiana’s landscape is dominated by row crop agriculture, 

promoting channelization, eventually leading to increased erosion, sedimentation, and 

loss of riparian area, thus creating invariable microhabitat structure (Gammon, 1998). 
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Within Indiana, few studies have observed darter microhabitat usage and more 

specifically, between sites that differ in microhabitat availability and overall stream 

structure. This study ultimately identified patterns of darter habitat use while detailing 

individual life history needs that determine niche partitioning, migration, development, 

and behavior (Welsh and Perry, 1998).  
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TABLE 1.—Location of sample sites, stream attributes, and most abundant species at each site. Drainage area estimated using Drainage 

Areas of Indiana Streams (Hoggatt, 1975). Two sites were sampled at both Killbuck Creek and White River. Primary substrates based on 

range (silt, sand, gravel, cobble, boulder, bedrock). Sites with an asterisk are located in the Upper White River watershed. 

 

 

    Name        Drainage area (km2)     Avg. width (m)     Primary substrate (s)     Mean flow (m/s)     Mean depth (m)     Species 

 

Bell Creek*            41.4                   8.7      Cobble-boulder     0.11       0.16  Rainbow 

Buck Creek*          233.1                 19.2      Gravel-cobble                0.45       0.10  Rainbow 

Bull Fork                  38.1         10.1                    Cobble-boulder              0.01       0.10  Orangethroat 

Harvey Branch             23.1                    7.1                    Boulder-bedrock     0.04       0.08  Fantail/Orangethroat 

Killbuck Creek(1)*            19.2                    6.4                    Silt-gravel      0.13       0.17  Johnny 

Killbuck Creek(2)*            72.0                    6.7                    Silt-cobble                  0.18       0.15  Greenside 

Pipe Creek            41.0                    8.3                    Gravel-boulder     0.08       0.18  Rainbow 

White River(1)*               572.4                  18.3                    Cobble-boulder     0.21       0.11  Greenside/Rainbow 

White River(2)*               634.5                  19.2                    Cobble-boulder     0.21       0.07  Rainbow 

_______________________________________________________________________________________________________________ 
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TABLE 2.—Species distributions by stream/river collected for analysis. N is number of samples. 

______________________________________________________________________________

______________________________________________________________________________ 

                               Species 

              __________________________________________________________ 

Name         N               E. blennioides    Ecaeruleum    E. flabellare    E. nigrum     E. spectabile 

______________________________________________________________________________________ 

Bell Creek               50      10     24                    0                 14                 2               

Buck Creek             18       7                      11                    0                  0                  0 

Bull Fork                 19       0              0                     8                  0                 11 

Harvey Branch        22       0      0  11         0               11 

Killbuck Creek 1     31                 14                       0                     0                 17                  0 

Killbuck Creek 2     34     18      0                     0                  9                   7 

Pipe Creek        26       8    14                     4                  0                   0 

White River 1          38                   19                     19                     0                  0                   0 

White River 2        40      19                    20                     0                  1                   0 

Total      278                    95                    88                   23                 41                 31 

______________________________________________________________________________ 
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TABLE 3.—Type and value of substrate based on the substrate category of the Qualitative Habitat 

Evaluation Index for each sampling location.  

______________________________________________________________________________

______________________________________________________________________________ 

       Site                                   Best types                 Other types present                Silt         Embeddedness 

______________________________________________________________________________________ 
 

Bell Creek     30% Boulder/70% Cobble Detritus              Normal      Normal  

Buck Creek              30% Gravel/70% Cobble Silt, Artificial             Moderate      Moderate 

Bull Fork     50% Boulder/50% Cobble Detritus              Normal      Normal 

Harvey Branch     40% Bedrock/60% Slab-Bld. None              Free      Normal 

Killbuck Creek(1)    10% Gravel/90% Sand  Silt                                   Normal      None 

Killbuck Creek(2)    20% Sand/80% Cobble  Silt              Moderate      Normal 

Pipe Creek      30% Boulder/70% Gravel Detritus                            Normal      Normal 

White River(1)      50% Cobble/50% Boulder Silt              Moderate      Moderate 

White River(2)      20% Boulder/80% Cobble Silt              Moderate      Extensive 

______________________________________________________________________________ 
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FIGURE 2.— Principal Components Analysis ordination diagram (PC1 vs. PC2) of QHEI metrics 

between counties. Arrow indicates an increase in scoring of respective metrics. Axes labeled with 

most important contributing variables (component loadings of 0.3 or more).  

3210-1-2-3-4

2

1

0

-1

-2

PC1

P
C
2

Delaware

Franklin

County

Riparian, Cover, Channel, Substrate

P
o
o
l/
C
u
rr

e
n
t,
 G

ra
d
ie

n
t

 

 

 

 

 

 

 

 

 

 

 



 31 

 

FIGURE 3.— Principal Components Analysis ordination diagram (PC1 vs. PC3) of QHEI metrics 

between counties. Arrow indicates an increase in scoring of respective metrics. Axes labeled with 

most important contributing variables (component loadings of 0.3 or more).  
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FIGURE 4.— Nonmetric Multidimensional scaling ordination diagram (NMS1 vs. NMS2) of 

microhabitat use of all darter species. 
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FIGURE 5.— Nonmetric multidimensional scaling ordination diagram (NMS1 vs. NMS3) of 

microhabitat use of all darter species. 
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FIGURE 6.—Nonmetric multidimensional scaling ordination (NMS1 vs. NMS2) of microhabitat 

usage by species from the Upper White River watershed
*
.  
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FIGURE 7.—Nonmetric multidimensional scaling ordination (NMS1 vs. NMS2) of microhabitat 

usage by species from the Whitewater River watershed
*
. 
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FIGURE 8.—Nonmetric multidimensional scaling ordination (NMS1 vs. NMS2) of microhabitat 

usage data by species between watersheds (excluding fantail and johnny darters). County 1 is the 

Upper White River watershed and County 2 is the Whitewater River watershed. 
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TABLE 5.—Results of multinomial logistic regression. Reference category is greenside darter. 

Slope indicates direction and strength of relationship. Alpha = 0.05.  

______________________________________________________________________________ 

______________________________________________________________________________ 

                Microhabitat variables 

    _________________________________________________________ 

Species           Flow     Depth                             Substrate 

                            Slope        P-value           Slope       P-value              Slope       P-value  

______________________________________________________________________________________ 

Fantail                              3.1           <0.001            -4.6          0.002                0.02           0.022 

Johnny                                            -1.6             0.018               *                *               -0.013         <0.001 

Orangethroat                                  -3.9            <0.001           -5.2         <0.001                *                   * 

Rainbow                                       --1.0              0.003              *                 *                   *                   * 

______________________________________________________________________________________ 

* Denotes non-significant P-values and respective slope estimates 
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FIGURE 1.—Location of sampling sites. Top picture represents Delaware County, Indiana and bottom is Franklin County, Indiana.  



 39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 40 

Appendix 1. Stream site, location, and microhabitat information for each species. 

Stream Location Species 
Flow 
(m/s) 

Depth 
(m) 

% 
Bedrock 

% 
Boulder 

% 
Cobble 

% 
Gravel 

% 
Sand 

% 
Silt 

Bell Creek 400 W/700 S, Muncie Rain 0.07 0.119 0 80 0 15 5 0 

Bell Creek 400 W/700 S, Muncie John 0.091 0.079 0 100 0 0 0 0 

Bell Creek 400 W/700 S, Muncie Rain 0.046 0.241 0 0 50 10 40 0 

Bell Creek 400 W/700 S, Muncie John 0.009 0.101 0 0 0 0 100 0 

Bell Creek 400 W/700 S, Muncie Rain 0.098 0.189 0 40 50 10 0 0 

Bell Creek 400 W/700 S, Muncie Rain 0.116 0.119 0 50 50 0 0 0 

Bell Creek 400 W/700 S, Muncie Rain 0.046 0.131 0 0 0 10 0 0 

Bell Creek 400 W/700 S, Muncie Rain 0.061 0.18 0 20 20 20 40 0 

Bell Creek 400 W/700 S, Muncie Green 0.03 0.271 0 20 0 0 80 0 

Bell Creek 400 W/700 S, Muncie Rain 0.137 0.259 0 50 0 0 50 0 

Bell Creek 400 W/700 S, Muncie Green 0.183 0.119 0 50 0 20 30 0 

Bell Creek 400 W/700 S, Muncie John 0.107 0.28 0 0 0 50 50 0 

Bell Creek 400 W/700 S, Muncie Green 0.015 0.189 0 0 0 20 80 0 

Bell Creek 400 W/700 S, Muncie John 0.003 0.11 0 0 0 50 50 0 

Bell Creek 400 W/700 S, Muncie Rain 0.006 0.189 0 0 0 50 50 0 

Bell Creek 400 W/700 S, Muncie Green 0.259 0.119 0 100 0 0 0 0 

Bell Creek 400 W/700 S, Muncie Green 0.305 0.101 0 80 20 0 0 0 

Bell Creek 400 W/700 S, Muncie Green 0.457 0.158 0 30 50 20 0 0 

Bell Creek 400 W/700 S, Muncie Rain 0.32 0.201 0 60 20 20 0 0 

Bell Creek 400 W/700 S, Muncie Rain 0.158 0.25 0 60 20 20 0 0 

Bell Creek 400 W/700 S, Muncie Green 0.183 0.149 0 0 0 50 50 0 

Bell Creek 400 W/700 S, Muncie Green 0.091 0.18 0 20 60 20 0 0 

Bell Creek 400 W/700 S, Muncie Rain 0.03 0.079 0 0 0 0 100 0 

Bell Creek 400 W/700 S, Muncie John 0.198 0.14 0 20 0 40 40 0 

Bell Creek 400 W/700 S, Muncie Rain 0.122 0.201 0 0 0 20 80 0 

Bell Creek 400 W/700 S, Muncie Rain 0.061 0.219 0 0 0 20 80 0 

Bell Creek 400 W/700 S, Muncie John 0.055 0.189 0 40 0 20 40 0 

Bell Creek 400 W/700 S, Muncie Rain 0.037 0.299 0 60 0 20 20 0 

Bell Creek 400 W/700 S, Muncie John 0.03 0.271 0 50 40 0 10 0 

Bell Creek 400 W/700 S, Muncie John 0.037 0.25 0 0 50 0 50 0 

Bell Creek 400 W/700 S, Muncie Rain 0.046 0.311 0 50 30 20 0 0 
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Bell Creek 400 W/700 S, Muncie John 0.024 0.171 0 0 60 0 40 0 

Bell Creek 400 W/700 S, Muncie John 0.122 0.101 0 0 0 0 100 0 

Bell Creek 400 W/700 S, Muncie John 0.122 0.149 0 0 0 0 100 0 

Bell Creek 400 W/700 S, Muncie John 0.091 0.201 0 0 0 10 90 0 

Bell Creek 400 W/700 S, Muncie Green 0.122 0.229 0 0 50 20 30 0 

Bell Creek 400 W/700 S, Muncie John 0.107 0.229 0 0 50 50 0 0 

Bell Creek 400 W/700 S, Muncie John 0.213 0.03 0 0 0 50 50 0 

Bell Creek 400 W/700 S, Muncie Rain 0.183 0.091 0 40 30 10 20 0 

Bell Creek 400 W/700 S, Muncie Rain 0.219 0.101 0 20 30 25 25 0 

Bell Creek 400 W/700 S, Muncie Rain 0.003 0.061 0 0 0 50 50 0 

Bell Creek 400 W/700 S, Muncie Rain 0.003 0.061 0 90 0 0 10 0 

Bell Creek 400 W/700 S, Muncie Rain 0.067 0.079 0 50 50 0 0 0 

Bell Creek 400 W/700 S, Muncie Rain 0.003 0.07 0 0 0 0 100 0 

Bell Creek 400 W/700 S, Muncie Rain 0.213 0.049 0 0 0 80 20 0 

Bell Creek 400 W/700 S, Muncie Rain 0.015 0.061 0 0 0 80 20 0 

Bell Creek 400 W/700 S, Muncie Green 0.137 0.049 0 0 40 40 20 0 

Bell Creek 400 W/700 S, Muncie Orange 0.107 0.049 0 0 0 0 100 0 

Bell Creek 400 W/700 S, Muncie Rain 0.091 0.101 0 0 50 30 20 0 

Bell Creek 400 W/700 S, Muncie Rain 0.003 0.299 0 0 100 0 0 0 

Buck Creek Yorktown Rain 0.427 0.046 0 0 90 10 0 0 

Buck Creek Yorktown Rain 0.488 0.04 0 10 70 20 0 0 

Buck Creek Yorktown Rain 0.61 0.101 0 10 60 20 0 0 

Buck Creek Yorktown Green 0.671 0.101 0 0 10 10 0 0 

Buck Creek Yorktown Rain 0.244 0.101 0 20 60 10 10 0 

Buck Creek Yorktown Green 0.411 0.131 0 60 20 20 0 0 

Buck Creek Yorktown Green 0.64 0.058 0 50 50 0 0 0 

Buck Creek Yorktown Green 0.335 0.03 0 0 60 40 0 0 

Buck Creek Yorktown Green 0.762 0.131 0 0 90 10 0 0 

Buck Creek Yorktown Green 0.579 0.079 0 0 90 10 0 0 

Buck Creek Yorktown Green 0.884 0.079 0 0 90 10 0 0 

Buck Creek Yorktown Rain 0.396 0.201 0 40 40 0 20 0 

Buck Creek Yorktown Rain 0.335 0.18 0 0 90 10 0 0 

Buck Creek Yorktown Rain 0.183 0.04 0 50 50 0 0 0 

Buck Creek Yorktown Rain 0.274 0.14 0 60 20 20 0 0 

Buck Creek Yorktown Rain 0.305 0.14 0 15 15 10 60 0 
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Buck Creek Yorktown Rain 0.305 0.079 0 0 70 20 10 0 

Buck Creek Yorktown Rain 0.183 0.149 0 0 0 5 95 0 
Killbuck Creek 
1 450 W, Muncie John 0.158 0.201 0 0 0 10 90 0 
Killbuck Creek 
1 450 W, Muncie John 0.152 0.28 0 0 0 10 90 0 
Killbuck Creek 
1 450 W, Muncie John 0.061 0.122 0 0 25 25 25 25 
Killbuck Creek 
1 450 W, Muncie Green 0.091 0.219 0 10 40 0 50 0 
Killbuck Creek 
1 450 W, Muncie Green 0.152 0.201 0 0 10 0 90 0 
Killbuck Creek 
1 450 W, Muncie John 0.177 0.201 0 0 50 30 20 0 
Killbuck Creek 
1 450 W, Muncie Green 0.122 0.101 0 0 60 20 20 0 
Killbuck Creek 
1 450 W, Muncie Green 0.152 0.122 0 20 30 0 50 0 
Killbuck Creek 
1 450 W, Muncie John 0.152 0.299 0 0 0 0 100 0 
Killbuck Creek 
1 450 W, Muncie John 0.122 0.079 0 0 0 0 100 0 
Killbuck Creek 
1 450 W, Muncie Green 0.168 0.229 0 0 40 20 40 0 
Killbuck Creek 
1 450 W, Muncie John 0.091 0.134 0 0 0 50 50 0 
Killbuck Creek 
1 450 W, Muncie John 0.094 0.131 0 0 40 40 20 0 
Killbuck Creek 
1 450 W, Muncie Green 0.128 0.229 0 0 40 40 20 0 
Killbuck Creek 
1 450 W, Muncie Green 0.091 0.201 0 0 20 20 60 0 
Killbuck Creek 
1 450 W, Muncie John 0.107 0.299 0 0 0 50 50 0 
Killbuck Creek 
1 450 W, Muncie Green 0.107 0.201 0 0 60 20 20 0 
Killbuck Creek 
1 450 W, Muncie John 0.091 0.131 0 0 0 0 50 50 
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Killbuck Creek 
1 450 W, Muncie John 0.183 0.11 0 0 0 0 100 0 
Killbuck Creek 
1 450 W, Muncie John 0.152 0.201 0 0 0 0 100 0 
Killbuck Creek 
1 450 W, Muncie Green 0.091 0.101 0 0 50 0 50 0 
Killbuck Creek 
1 450 W, Muncie John 0.122 0.11 0 0 0 0 100 0 
Killbuck Creek 
1 450 W, Muncie John 0.244 0.049 0 0 0 0 100 0 
Killbuck Creek 
1 450 W, Muncie Green 0.122 0.131 0 50 0 0 50 0 
Killbuck Creek 
1 450 W, Muncie John 0.183 0.201 0 0 0 0 100 0 
Killbuck Creek 
1 450 W, Muncie John 0.091 0.049 0 0 0 0 100 0 
Killbuck Creek 
1 450 W, Muncie John 0.061 0.079 0 0 0 0 100 0 
Killbuck Creek 
1 450 W, Muncie Green 0.168 0.101 0 50 0 30 20 0 
Killbuck Creek 
1 450 W, Muncie Green 0.061 0.219 0 20 60 0 20 0 
Killbuck Creek 
1 450 W, Muncie Green 0.091 0.152 0 20 60 0 20 0 
Killbuck Creek 
1 450 W, Muncie Green 0.107 0.299 0 0 50 0 50 0 
Killbuck Creek 
2 500 N, Gaston John 0.055 0.131 0 0 0 0 20 80 
Killbuck Creek 
2 500 N, Gaston John 0.027 0.171 0 0 0 0 30 70 
Killbuck Creek 
2 500 N, Gaston Orange 0.03 0.049 0 0 0 0 20 80 
Killbuck Creek 
2 500 N, Gaston John 0.152 0.21 0 0 0 0 20 80 
Killbuck Creek 
2 500 N, Gaston Green 0.155 0.201 0 0 0 0 50 50 
Killbuck Creek 
2 500 N, Gaston John 0.131 0.271 0 0 0 0 50 50 

Killbuck Creek 500 N, Gaston John 0.177 0.28 0 0 0 0 50 50 
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2 

Killbuck Creek 
2 500 N, Gaston Green 0.076 0.299 0 0 0 20 30 50 
Killbuck Creek 
2 500 N, Gaston John 0.198 0.189 0 0 0 20 30 50 
Killbuck Creek 
2 500 N, Gaston John 0.146 0.201 0 0 0 0 50 50 
Killbuck Creek 
2 500 N, Gaston Green 0.158 0.25 0 0 0 20 30 50 
Killbuck Creek 
2 500 N, Gaston Green 0.131 0.049 0 0 0 0 50 50 
Killbuck Creek 
2 500 N, Gaston John 0.14 0.158 0 0 0 0 20 80 
Killbuck Creek 
2 500 N, Gaston Green 0.094 0.299 0 0 0 0 30 70 
Killbuck Creek 
2 500 N, Gaston Green 0.116 0.32 0 10 0 0 40 50 
Killbuck Creek 
2 500 N, Gaston John 0.091 0.299 0 0 0 0 50 50 
Killbuck Creek 
2 500 N, Gaston Green 0.183 0.183 0 0 40 40 20 0 
Killbuck Creek 
2 500 N, Gaston Green 0.219 0.201 0 0 0 80 10 10 
Killbuck Creek 
2 500 N, Gaston Green 0.009 0.201 0 0 0 0 50 50 
Killbuck Creek 
2 500 N, Gaston Green 0.442 0.03 0 0 0 50 50 0 
Killbuck Creek 
2 500 N, Gaston Green 0.213 0.122 0 0 0 50 50 0 
Killbuck Creek 
2 500 N, Gaston Green 0.366 0.04 0 0 0 80 20 0 
Killbuck Creek 
2 500 N, Gaston Green 0.158 0.101 0 0 0 0 50 50 
Killbuck Creek 
2 500 N, Gaston Orange 0.076 0.101 0 0 0 0 50 50 
Killbuck Creek 
2 500 N, Gaston Orange 0.198 0.049 0 0 0 0 50 50 
Killbuck Creek 
2 500 N, Gaston Green 0.189 0.061 0 0 0 60 30 10 
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Killbuck Creek 
2 500 N, Gaston Green 0.198 0.03 0 0 0 50 50 0 
Killbuck Creek 
2 500 N, Gaston Orange 0.107 0.061 0 0 0 0 80 20 
Killbuck Creek 
2 500 N, Gaston Green 0.122 0.131 0 10 20 0 50 20 
Killbuck Creek 
2 500 N, Gaston Orange 0.107 0.061 0 0 0 0 80 20 
Killbuck Creek 
2 500 N, Gaston Green 0.091 0.122 0 0 0 0 80 20 
Killbuck Creek 
2 500 N, Gaston Orange 0.107 0.04 0 0 0 60 20 20 
Killbuck Creek 
2 500 N, Gaston Orange 0.152 0.04 0 0 0 60 20 20 
Killbuck Creek 
2 500 N, Gaston Green 0.183 0.152 0 0 0 60 20 20 

White River 1 
McCulloch Park, 
Muncie Green 0.457 0.131 90 0 0 0 10 0 

White River 1 
McCulloch Park, 
Muncie Green 0.213 0.158 90 0 0 5 5 0 

White River 1 
McCulloch Park, 
Muncie Green 0.762 0.329 100 0 0 0 0 0 

White River 1 
McCulloch Park, 
Muncie Rain 0.03 0.201 0 90 0 10 0 0 

White River 1 
McCulloch Park, 
Muncie Rain 0.03 0.07 0 40 0 10 0 50 

White River 1 
McCulloch Park, 
Muncie Rain 0.091 0.101 0 10 0 0 0 0 

White River 1 
McCulloch Park, 
Muncie Green 0.046 0.201 0 0 50 0 0 50 

White River 1 
McCulloch Park, 
Muncie Green 0.03 0.03 0 80 0 10 0 10 

White River 1 
McCulloch Park, 
Muncie Green 0.122 0.101 0 80 0 10 0 10 

White River 1 
McCulloch Park, 
Muncie Rain 0.122 0.101 0 80 0 10 0 10 

White River 1 
McCulloch Park, 
Muncie Green 0.015 0.101 50 0 0 0 50 0 

White River 1 McCulloch Park, Green 0.366 0.122 0 50 50 0 0 0 
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Muncie 

White River 1 
McCulloch Park, 
Muncie Rain 0.396 0.091 0 80 20 0 0 0 

White River 1 
McCulloch Park, 
Muncie Rain 0.046 0.122 0 50 0 0 0 50 

White River 1 
McCulloch Park, 
Muncie Green 0.183 0.335 0 20 40 40 0 0 

White River 1 
McCulloch Park, 
Muncie Green 0.03 0.122 0 50 50 0 0 0 

White River 1 
McCulloch Park, 
Muncie Green 0.457 0.122 0 100 0 0 0 0 

White River 1 
McCulloch Park, 
Muncie Rain 0.457 0.122 0 100 0 0 0 0 

White River 1 
McCulloch Park, 
Muncie Green 0.183 0.061 0 70 30 0 0 0 

White River 1 
McCulloch Park, 
Muncie Green 0.457 0.04 0 60 20 20 0 0 

White River 1 
McCulloch Park, 
Muncie Rain 0.091 0.061 0 0 60 0 20 20 

White River 1 
McCulloch Park, 
Muncie Rain 0.152 0.149 50 50 0 0 0 0 

White River 1 
McCulloch Park, 
Muncie Rain 0.427 0.049 0 60 0 20 20 0 

White River 1 
McCulloch Park, 
Muncie Rain 0.213 0.049 0 50 30 20 0 0 

White River 1 
McCulloch Park, 
Muncie Green 0.213 0.049 0 50 30 20 0 0 

White River 1 
McCulloch Park, 
Muncie Rain 0.03 0.03 50 0 0 0 0 50 

White River 1 
McCulloch Park, 
Muncie Rain 0.366 0.079 0 60 20 20 0 0 

White River 1 
McCulloch Park, 
Muncie Rain 0.335 0.119 0 0 70 30 0 0 

White River 1 
McCulloch Park, 
Muncie Green 0.198 0.079 0 60 20 20 0 0 

White River 1 
McCulloch Park, 
Muncie Green 0.152 0.03 0 100 0 0 0 0 

White River 1 
McCulloch Park, 
Muncie Rain 0.091 0.061 0 100 0 0 0 0 
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White River 1 
McCulloch Park, 
Muncie Green 0.152 0.079 0 70 20 10 0 0 

White River 1 
McCulloch Park, 
Muncie Rain 0.152 0.079 0 70 20 10 0 0 

White River 1 
McCulloch Park, 
Muncie Green 0.457 0.061 0 80 10 10 0 0 

White River 1 
McCulloch Park, 
Muncie Rain 0.152 0.119 0 100 0 0 0 0 

White River 1 
McCulloch Park, 
Muncie Rain 0.213 0.061 0 10 80 10 0 0 

White River 1 
McCulloch Park, 
Muncie Rain 0.107 0.305 0 50 0 20 30 0 

White River 1 
McCulloch Park, 
Muncie Green 0.107 0.213 0 70 0 20 10 0 

White River 2 
Westside Park, 
Muncie Rain 0.122 0.119 0 50 20 10 20 0 

White River 2 
Westside Park, 
Muncie Rain 0.03 0.119 0 40 30 10 20 0 

White River 2 
Westside Park, 
Muncie Rain 0.046 0.149 0 0 50 25 25 0 

White River 2 
Westside Park, 
Muncie Rain 0.076 0.101 0 0 50 25 25 0 

White River 2 
Westside Park, 
Muncie Rain 0.091 0.061 0 50 40 5 5 0 

White River 2 
Westside Park, 
Muncie Rain 0.091 0.04 0 0 40 40 20 0 

White River 2 
Westside Park, 
Muncie Rain 0.189 0.07 0 0 80 10 10 0 

White River 2 
Westside Park, 
Muncie Rain 0.226 0.049 0 0 50 50 0 0 

White River 2 
Westside Park, 
Muncie Rain 0.183 0.049 0 0 20 40 40 0 

White River 2 
Westside Park, 
Muncie Green 0.177 0.061 0 0 20 40 40 0 

White River 2 
Westside Park, 
Muncie Green 0.366 0.04 0 0 0 80 20 0 

White River 2 
Westside Park, 
Muncie Green 0.29 0.049 0 0 0 90 10 0 

White River 2 Westside Park, Green 0.29 0.079 0 20 0 60 20 0 
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Muncie 

White River 2 
Westside Park, 
Muncie Green 0.305 0.091 0 20 0 60 20 0 

White River 2 
Westside Park, 
Muncie Rain 0.28 0.079 0 30 30 20 20 0 

White River 2 
Westside Park, 
Muncie Green 0.274 0.049 0 80 0 10 10 0 

White River 2 
Westside Park, 
Muncie John 0.107 0.07 0 0 0 10 90 0 

White River 2 
Westside Park, 
Muncie Green 0.03 0.07 0 0 0 0 40 60 

White River 2 
Westside Park, 
Muncie Rain 0.128 0.07 0 0 60 20 20 0 

White River 2 
Westside Park, 
Muncie Rain 0.04 0.049 0 40 40 20 0 0 

White River 2 
Westside Park, 
Muncie Green 0.29 0.101 0 40 40 20 0 0 

White River 2 
Westside Park, 
Muncie Green 0.152 0.049 0 20 40 20 20 0 

White River 2 
Westside Park, 
Muncie Rain 0.122 0.03 0 20 40 20 20 0 

White River 2 
Westside Park, 
Muncie Rain 0.091 0.04 0 0 60 20 20 0 

White River 2 
Westside Park, 
Muncie Green 0.171 0.101 0 40 30 0 30 0 

White River 2 
Westside Park, 
Muncie Rain 0.107 0.049 0 0 40 50 10 0 

White River 2 
Westside Park, 
Muncie Green 0.299 0.07 0 30 0 20 50 0 

White River 2 
Westside Park, 
Muncie Green 0.259 0.07 0 30 0 20 50 0 

White River 2 
Westside Park, 
Muncie Rain 0.274 0.079 0 0 50 0 50 0 

White River 2 
Westside Park, 
Muncie Green 0.381 0.07 0 50 50 0 0 0 

White River 2 
Westside Park, 
Muncie Rain 0.402 0.061 0 50 20 30 0 0 

White River 2 
Westside Park, 
Muncie Green 0.411 0.061 0 30 0 20 50 0 
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White River 2 
Westside Park, 
Muncie Green 0.457 0.061 0 0 60 20 20 0 

White River 2 
Westside Park, 
Muncie Green 0.183 0.07 0 0 0 0 100 0 

White River 2 
Westside Park, 
Muncie Rain 0.259 0.07 0 0 40 0 60 0 

White River 2 
Westside Park, 
Muncie Rain 0.305 0.049 0 40 40 0 20 0 

White River 2 
Westside Park, 
Muncie Green 0.152 0.03 0 20 40 20 20 0 

White River 2 
Westside Park, 
Muncie Rain 0.152 0.03 0 20 40 20 20 0 

White River 2 
Westside Park, 
Muncie Green 0.274 0.07 0 0 80 15 5 0 

White River 2 
Westside Park, 
Muncie Green 0.244 0.061 0 40 50 10 0 0 

Bull Fork Clarksburg Fan 0.061 0.101 20 30 20 0 30 0 

Bull Fork Clarksburg Orange 0.03 0.049 0 0 50 50 0 0 

Bull Fork Clarksburg Fan 0.091 0.049 0 0 40 60 0 0 

Bull Fork Clarksburg Fan 0.03 0.076 0 40 40 20 0 0 

Bull Fork Clarksburg Orange 0.091 0.101 0 20 80 0 0 0 

Bull Fork Clarksburg Orange 0.061 0.101 0 0 80 20 0 0 

Bull Fork Clarksburg Orange 0.03 0.11 0 10 60 30 0 0 

Bull Fork Clarksburg Orange 0.091 0.076 0 0 90 10 0 0 

Bull Fork Clarksburg Orange 0.122 0.101 0 20 40 40 0 0 

Bull Fork Clarksburg Orange 0.213 0.049 0 0 60 40 0 0 

Bull Fork Clarksburg Fan 0.213 0.101 0 50 40 10 0 0 

Bull Fork Clarksburg Orange 0.152 0.079 0 10 70 20 0 0 

Bull Fork Clarksburg Orange 0.274 0.101 0 0 70 30 0 0 

Bull Fork Clarksburg Orange 0.091 0.119 0 0 50 50 0 0 

Bull Fork Clarksburg Orange 0.03 0.125 0 20 50 30 0 0 

Bull Fork Clarksburg Fan 0.244 0.101 0 40 20 40 0 0 

Bull Fork Clarksburg Fan 0.305 0.18 0 20 60 20 0 0 

Bull Fork Clarksburg Fan 0.152 0.131 0 0 40 60 0 0 

Bull Fork Clarksburg Fan 0.091 0.079 0 90 10 0 0 0 
Harvey 
Branch Oldenburg Fan 0.03 0.101 95 5 0 0 0 0 



 50 

Harvey 
Branch Oldenburg Orange 0.03 0.024 10 30 60 0 0 0 
Harvey 
Branch Oldenburg Fan 0.03 0.024 10 30 60 0 0 0 
Harvey 
Branch Oldenburg Fan 0.03 0.11 90 10 0 0 0 0 
Harvey 
Branch Oldenburg Fan 0.015 0.101 0 10 70 20 0 0 
Harvey 
Branch Oldenburg Orange 0.015 0.119 95 0 0 5 0 0 
Harvey 
Branch Oldenburg Fan 0.015 0.119 95 0 0 5 0 0 
Harvey 
Branch Oldenburg Fan 0.015 0.101 95 0 0 5 0 0 
Harvey 
Branch Oldenburg Fan 0.03 0.04 95 0 0 5 0 0 
Harvey 
Branch Oldenburg Orange 0.015 0.07 90 0 0 5 5 0 
Harvey 
Branch Oldenburg Fan 0.091 0.03 0 0 0 50 50 0 
Harvey 
Branch Oldenburg Fan 0.03 0.03 100 0 0 0 0 0 
Harvey 
Branch Oldenburg Fan 0.061 0.009 100 0 0 0 0 0 
Harvey 
Branch Oldenburg Fan 0.076 0.021 100 0 0 0 0 0 
Harvey 
Branch Oldenburg Orange 0.03 0.131 100 0 0 0 0 0 
Harvey 
Branch Oldenburg Orange 0.03 0.079 0 0 90 10 0 0 
Harvey 
Branch Oldenburg Orange 0.03 0.149 0 10 0 10 80 0 
Harvey 
Branch Oldenburg Orange 0.03 0.25 0 65 30 0 5 0 
Harvey 
Branch Oldenburg Orange 0.061 0.101 0 10 30 60 0 0 
Harvey 
Branch Oldenburg Orange 0.091 0.049 0 0 40 60 0 0 

Harvey Oldenburg Orange 0.137 0.049 0 0 80 20 0 0 
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Branch 

Harvey 
Branch Oldenburg Orange 0.061 0.101 0 0 80 20 0 0 

Pipe Creek Metamora Rain 0.03 0.131 0 5 25 0 70 0 

Pipe Creek Metamora Rain 0.046 0.14 0 0 20 60 20 0 

Pipe Creek Metamora Rain 0.04 0.21 0 0 90 0 10 0 

Pipe Creek Metamora Rain 0.046 0.18 0 0 80 10 10 0 

Pipe Creek Metamora Rain 0.058 0.21 0 0 80 10 10 0 

Pipe Creek Metamora Rain 0.046 0.21 0 0 20 20 60 0 

Pipe Creek Metamora Rain 0.03 0.21 0 0 20 20 60 0 

Pipe Creek Metamora Rain 0.03 0.119 0 0 0 10 40 0 

Pipe Creek Metamora Fan 0.061 0.149 0 0 10 30 60 0 

Pipe Creek Metamora Green 0.122 0.11 0 50 0 50 0 0 

Pipe Creek Metamora Rain 0.259 0.11 0 50 0 50 0 0 

Pipe Creek Metamora Rain 0.015 0.201 0 0 10 10 80 0 

Pipe Creek Metamora Rain 0.091 0.11 0 0 20 80 0 0 

Pipe Creek Metamora Fan 0.229 0.119 0 0 20 80 0 0 

Pipe Creek Metamora Rain 0.183 0.131 0 0 50 50 0 0 

Pipe Creek Metamora Rain 0.229 0.131 0 0 50 50 0 0 

Pipe Creek Metamora Fan 0.152 0.119 0 0 50 50 0 0 

Pipe Creek Metamora Green 0.046 0.119 0 0 40 60 0 0 

Pipe Creek Metamora Green 0.03 0.131 0 0 60 40 0 0 

Pipe Creek Metamora Green 0.03 0.18 0 0 60 40 0 0 

Pipe Creek Metamora Green 0.03 0.18 0 0 90 10 0 0 

Pipe Creek Metamora Green 0.076 0.131 0 0 100 0 0 0 

Pipe Creek Metamora Fan 0.061 0.11 0 10 10 80 0 0 

Pipe Creek Metamora Green 0.076 0.149 0 0 100 0 0 0 

Pipe Creek Metamora Green 0.03 0.119 0 10 90 0 0 0 

Pipe Creek Metamora Rain 0.03 0.119 0 0 100 0 0 0 
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Appendix 2. Qualitative Habitat Evaluation Index (QHEI) scores and respective metric scores for each stream. 

Stream Substrate Cover Channel Riparian Pool/Current Riffle/Run Gradient Score 

Bell Creek 17 13 12 8 5 6 6 67 

Buck Creek 15 8 7 4 8 6 6 54 

Bull Fork 20 13 14 8 11 6 6 78 

Harvey Branch 18 20 20 7 9 5 6 85 
Killbuck 
Creek(1) 13 10 8 5 7 1 7 51 
Killbuck 
Creek(2) 15 14 10 4 7 3 7 60 

Pipe Creek 19 15 17 6 9 4 8 78 

White River(1) 18 13 8 8 11 5 8 71 

White River(2) 18 14 8 5 10 5 8 68 

 

 

 

 


