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Chapter 1 

Introduction to the Network data 

 
 
 
1.1 Introduction 

Over the last decade, there has been a growing interest in the study of biological networks 

of macromolecular interactions. Identifying basic structural relationships among micro 

components is the main goal in the field of systems biology. In order to achieve this goal, 

we need an in-depth knowledge of the underlying structures or networks at the molecular 

level. A formal basis for handling such complex networks includes computational tools to 

support the modeling and simulation through methods developed in mathematical biology 

and bioinformatics. Since the 1960s, with some notable precursors in the preceding 

decades, a variety of mathematical formalisms have been proposed to describe this kind 

of complex networking. During the last few years, modeling efforts targeted several 

distinct types of networks at the molecular level, such as gene regulatory networks, 

metabolic networks, signal transduction networks or protein-protein interaction networks. 

Networks of interactions that are not restricted to a cell (intercellular communications) or 

take place at an altogether different level of detail (immunological networks, ecological 

networks) are also of immense interest.  
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1.2 A Brief History of Network Data Analysis 

The most popular distinction of the current work on networks and their analysis from 

previous works of the twentieth century is the scale that measures the dimension of nodes 

prevalent in a network. For example, one of the popular social networks, Facebook 

claims to have a billion users, where each user represents a node. On the other hand, 

protein interaction networks typically involve many hundreds or even thousands of 

nodes. There are a thousand or more articles on the analysis of co-citation networks 

today, whereas two decades ago the analysis of co-citation networks would typically 

involved less than 100 articles or authors (Fienberg, 2013). The reason behind this 

situation is the applicability of network and analysis got diversification in different 

concentration in recent era. 

A brief excerpt of the history of network data analysis is presented based on Fienberg 

(Fienberg, 2013). Initially, network studies were limited to social networks. Early 

network studies in sociology dealt primarily with relatively small sets of subjects whose 

connections allowed communication across a small set of links in a larger network 

setting. In their work, Stanley Milgram’s group (Milgram, 1967; Travers and Milgram, 

1969) presented the idea of how “small-world” phenomenon of short paths of 

connections linking most people in social spheres. Their studies provided the title for the 

play and movie “Six Degrees of Separation”, which ignored the complexity of their 

results due to the censoring. In the mid-seventies, White (1970) and Fienberg and Lee 

(1975) discussed a formal Markov-chain-like model and analysis of the Milgram 

experimental data, including information on the uncompleted chains. Milgram’s data 
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provided the early development of dynamic networks as his data were gathered in batches 

of transmission, and thus, these models can be thought of as representing early examples 

of generative descriptions of dynamic network evolution. 

In a more recent study, such as Dodds, Muhamad, and Watts (2003) considered a global 

“replication” variation on the Milgram study in which more than 60,000 e-mail users 

attempted to reach one of 18 target persons in 13 countries by forwarding messages to 

acquaintances. However, only 384 out of 24,163 chains reached their targets, nonetheless 

the estimated median length for completions was 7. One thing notable here was that they 

assumed that attrition occurs at random. 

Moreover, in the 1970s, several sociologists chose to study “blockmodels” and 

“structurally equivalent” groups of individuals again with small network datasets such as 

those arising in Sampson’s (1968) study of the relationships among 18 novices in a 

monastery. During that time, Sampson’s data had become a canonical example to 

illustrate new methods ranging from blockmodel algorithms (Breiger, Boorman, and 

Arabie, 1975; White, Boorman, and Breiger, 1976), to ݌ଵ model of Holland and 

Leinhardt (1981) and its generalizations (Fienberg, Meyer, and Wasserman, 1985), to 

mixed-membership stochastic blockmodels of Airoldi et al. (2008). Other examples 

include Zachary’s karate club network of friendships between 34 members of a karate 

club at a U.S. university in the 1970s (Zachary, 1977) and Lazega’s study of relationships 

among 72 partners and associates in a law firm (Lazega and van Duijn, 1997).  

Recently, evidence indicated that statistical modeling of random networks has had an 

impact on the empirical study of social networks. Statistical exponential family models 
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(Strauss and Ikeda, 1990) were a generalization of the Markov random network models 

introduced by Frank and Strauss (1986), which influenced the developments in spatial 

statistics (Besag, 1974). Complex dependencies within relational data structures were 

recognizable through these articles. 

Statistical physics models have been used recently to detect community structure in 

networks (Girvan and Newman, 2002; Backstrom et al., 2006). Moreover, the 

probabilistic literature on random graph models from the 1990s made the link with 

epidemics and other evolving stochastic phenomena. Watts and Strogatz (1998) and 

others used the same idea in the epidemic models to capture general characteristics of the 

evolution of these new variations on random networks. The demand of stochastic 

processes as a description of dynamic network models comes from being able to exploit 

the extensive literature already developed, including the existence and the form of 

stationary distributions and other model features or properties. Chung and Lu (2006) 

provided a complementary treatment of these models and their probabilistic properties.  

Machine learning is a relatively new approch, which emerged in several forms with the 

empirical studies of Faloutsos et al. (1999) and Kleinberg (2000a, 2000b, 2001), they 

introduced a model for which the underlying graph was a grid, the graphs generated did 

not have a power-law degree distribution, and each vertex has the same expected degree. 

The strict requirement that the underlying graph be a cycle or grid rendered the model 

applicable to webgraphs or biological networks. 
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1.3 Network Data Analysis in Biological Science 

Within the fields of Biology and Medicine, potential applications of network analysis or 

graph theory include identifying drug targets, determining the role of proteins or genes of 

unknown function (Jeong et al., 2003; Samanta and Loang, 2003), designing effective 

containment strategies for infectious diseases (Eubank et. al., 2004), and providing early 

diagnosis of neurological disorders through detecting abnormal patterns of neural 

synchronisation in specific brain regions (Schnitzler and Gross, 2005). There are several 

models currently used to represent biological networks which are descriptive in nature, 

for example, power-law networks (sometimes called scale-free) by Barabaasi and Albert 

(Barabaasi and Albert, 1999). Other biological network models specify a procedure for 

creating networks, for example, Erdos-Renyi or an exponential random graph model 

(ERGM). 

Broadly speaking, three classes of such bio-molecular networks attracted the most 

attention to date: metabolic networks of biochemical reactions; protein interaction 

networks consisting of the physical interactions between an organism’s proteins, and the 

transcriptional regulatory networks which describe the regulatory interactions between 

different genes (Pavlopoulos et al., 2011; Mason and Verwoerd, 2007). Networks have 

been constructed for the transcriptional regulatory networks of E. coli and S. cerevisiae 

(Salgado et al., 2006a, 2006b ; Lee et al., 2002; Keseler et al., 2005) and are maintained 

in databases such as RegulonDB (Salgado et al., 2006b) and EcoCyc (Keseler et al., 

2005). Such networks have usually been constructed through a combination of high-

throughput genome location experiments and literature searches. Many types of gene 
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transcription regulatory approaches have been reported in the past. Their nature and 

composition involved categorization by several factors: gene expression values 

(Keedwell and Narayanan, 2005; Shmulevich et al., 2002); the causal relationship 

between genes, e.g. with Bayesian analysis or Dynamic Bayesian Networks (Zou and 

Conzen, 2005; Husmeier, 2003); and the time domain e.g. discrete or continuous time (Li 

et al., 2006; He and Zeng, 2006; Filkov et al., 2002; Qian et al., 2001). Thus, 

transcription regulatory network were considered over the other biological networks. This 

work considered the Transcription Factor- Transcription Factor (TF-TF) interaction 

network of E. coli from RegulonDB version 7.4. A detailed description of TF-TF 

regulatory network data is given in Chapter 4. Other potential which could be subjected 

to analyses included the range of organisms from bacteria (genome.wisc.edu) to yeast 

(yeastgenome.org), to plants (maizese-quence.org) and mammals (namely humans, at 

genome.gov). These databases have been housed at a variety of server locations with 

publicly accessible data sets. 

Several biological domains are accessible where graph theory techniques can be applied 

to knowledge extraction from data, for instance, modeling of bio-molecular networks, 

measurement of centrality and importance in bio-molecular networks, identifying motifs 

or functional modules in biological networks. Protein-protein interaction (PPI) networks, 

biochemical networks, transcriptional regulation networks, signal transduction or 

metabolic networks are the highlighted network categories in systems biology 

(Pavlopoulos et al., 2011). 
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1.4 Graphical Model Theory for Network data 

The well-developed field of graph theory provides fundamental methods to study 

complex networks. A network or a graph is a set ܸ of ܰ vertices pairwise connected by a 

subset ܧ of edges; Each is a pair of vertices. These edges can be oriented, weighted, 

signed, or not (Lesne, 2006; Fronczak, 2012). A graph may be undirected, meaning that 

there is no distinction between the orders of the two vertices associated with each edge, 

or its edge may be directed from one vertex to another. Biological networks come in a 

variety of forms. Nodes in biological networks represent biomolecules such as genes, 

proteins or metabolites, and edges connecting these nodes indicate functional, physical or 

chemical interactions between the corresponding biomolecules. Understanding these 

complex biological systems has become an important problem that has lead to intensive 

research in network analyses, modeling, and function and disease gene identification and 

prediction (Milenkovic, 2008). 

Many models currently used for biological networks are descriptive, and simply specify 

features of a graph. For example, power-law networks (Barabaasi and Albert, 1999) are 

described as networks with a node degree distribution. Other biological network models 

specify a procedure for creating networks. Erdos-Renyi random graphs are created by 

considering each pair of nodes in a given node set as a potential edge. For each potential 

edge, a fair n-sided die is cast, if the die comes up above a given threshold, the edge is 

included. Otherwise, it is not. An exponential random graph model (ERGM) takes a 

different, more general approach (Saul and Filkov, 2006) as discussed below. 
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In particular, graphical models can be studied with respect to both global and local 

properties of components of the networks. The simplest versions of the local properties 

are: the number of vertices a network may have and the rules guiding the interactions 

among these vertices. These local rules are guided by probability theory in order to 

address the uncertainty and the lack of regularity in real networks leading to random 

graph models. In the literature of complex network modeling, the exponential family of 

random graphs is among the most widely used random graph models for social and 

biological networks (Begum et al., 2012; Przulj et al., 2004; Saul and Filkov, 2007; 

Pattison and Wasserman, 1999; Robins et al., 1999; Goodreau, 2007; Robins et al., 

2007a). Although an Exponential Random Graph Model (ERGM) presents a flexible 

means to model complex biological models, the likelihood function for parameter 

estimation involves a mathematically intractable normalizing constant. Several statistical 

computational methods have been proposed to address this difficulty in parameter 

estimation in an ERGM. These are the Markov Chain Monte Carlo Maximum Likelihood 

Estimation (MCMCMLE) method and the Maximum Pseudo Likelihood Estimation 

(MPLE) method (Hunter and Handcook, 2006; Robins et al., 2007a; Snijders, 2002). The 

ERGM and the methods of parameter estimation in an ERGM are discusses in detail in 

Chapter 2. 

ERGMs represent the generative process of tie formation in networks, where there are 

two basic types of processes: dyadic dependent and dyadic independent. A dyad refers to 

a pair of nodes and the relations between them. Dyadic dependent processes are those in 

which the state of one dyad depends stochastically on the state of other dyads. A classic 
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example is the concept that "a friend of my friend is my friend" - the presence of a 

friendship tie in dyads (i, j) and (j, k) increases the probability of a friendship tie in dyad 

(i, k). Dyadic independent processes exhibit no direct dependence among dyads: An 

example is the related social concept that "birds of a feather flock together"- if the two 

nodes in a dyad have similar attributes, the probability of a friendship tie is increased. 

The state of the dyad depends on the attributes of the two nodes, but not on the state of 

other dyads (Hunter et al., 2008; Handcock et al., 2003). 

The distinction between these two types of processes affects the specification, estimation 

and behavior of ERGMs. Models with only dyadic independent terms have a likelihood 

function that simplifies to a form that can be maximized using standard logistic 

regression methods. Intuition about how these models behave is usually straightforward, 

as for logistic regression models. By contrast, models for processes with dyadic 

dependence require computationally intensive estimation and imply complex forms of 

feedback and global dependence that confound both intuition and estimation (Hunter et 

al., 2008; Handcock et al., 2003). 

1.5 Research Objectives 

In this study, several random networks will be simulated by imposing the number of 

attributes physically and then comparing them with the observed TF-TF network. The 

basis for this approach lies in the biological network, itself, where the physical number of 

attributes might influence the overall biological process. There are several other ways of 

simulating a random network for instance, Erdos-Renyi method uses a simple binomial 

distribution with a given probability and using a fitted model to simulate similar kind of 
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network. However, in this study, the physical number of network attributes will be 

counted in the observed TF-TF network, and then impose the numbers randomly to 

simulate networks by keeping almost the same number of different attributes. For 

comparing the estimates, the ERGM was used to estimate several network attributes of 

interest. Then, a comparison will be made to determine how far the estimates deviated 

from the observed network when the same number of attributes is used in the randomly 

simulated model. Moreover, random network will be simulated to explore how a specific 

attribute reacted to increased nodes in the random model. The goal was to develop 

efficient computational methods for fitting ERGM to biological interaction networks 

through an extensive simulation study. The detailed description of the simulation study is 

presented in Chapter 4. 

Implementation of these computational methods will be carried out using the statistical 

computing environment software package called R. Specifically, the ERGM, 

NETWORK, IGRAPH and STATNET packages of the R statistical computing 

environment are utilized. 

The remainder of this thesis is arranged as follows: In Chapter 2, a discussion of the 

Exponential Random Graph model, applications and the methods for parameter 

estimation are presented. Chapter 3 presents the observed biological network data. In 

Chapter 4, the outcomes of the simulation study are presented. And finally, Chapter 5 

discusses conclusion and future directions. 



 

 

Chapter 2 

The Exponential Random Graph Model (ERGM) 

 
 
 

2.1   General Introduction 

A graph consists of a set of objects or individuals, called nodes (points, vertices), 

connected by links (edges). In the simplest notion, a graph can be considered as a way of 

specifying pairwise or more complicated relations among a collection of its nodes. In 

graph theory, a network is denoted as ܩ = 	  where ܸ is the set of vertices (or ,(ܧ,ܸ)

nodes) of the graph, and ܧ	are two element subsets of ܸ referred to as edges (or links or 

connections or other attributes) (Lesne, 2006; Fronczak, 2012). Graphical models are 

introduced in order to mimic the patterns of connections in real networks, in an effort to 

understand the implications of those patterns, or just to describe, how network structures 

originate, and how they evolve over time (Fronczak, 2012). There are several kinds of 

graphical models such as Markov graph models, Gaussian graphical models, exponential 

random graph models (ERGMs). ERGMs graphs are among the most widely-studied 

network models. 

 An Exponential Random Graph Model (ERGM) models the probability distribution 

(mass function / density function) for a given class of graphs. Given an observed graph 
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and a set of explanatory variables on that graph the probability distribution is estimated. 

The distribution provides a concise summary of the class of graphs to which the observed 

graph belongs, i.e. the probability distribution can be used to calculate the probability that 

any given graph is drawn from the same distribution as the observed graph (Wasserman 

and Pattison, 1996; Saul and Filkov, 2007; Robins et al., 2007a). The ERGM is 

particularly useful when one wants to create model networks that match the properties of 

observed networks as closely as possible, but without going into details of the specific 

process underlying network formation. Such graphical models are not only interesting in 

their own but also right for the light they shed on the structural properties of networks 

(Fronczak, 2012).  

The first truly general ensemble model for networks was introduced by Solomonoff and 

Rapoport in 1951, who considered the collection of all undirected simple graphs with a 

fixed number of vertices, ܰ, in which every pair of nodes was connected with an edge 

with probability ݌ (Solomonoff and Rapoport, 1951). In the late 1950s and early 1960s, 

the model was fairly extensively studied by Erdos and Renyi (Erdos and Renyi, 1959; 

Erdos and Renyi, 1960). Ever since it is known as Bernoulli model or Erdos-Renyi 

model. This particular ensemble of graphs was indeed the first example of the ERGM.  

Holland and Leinhardt (Holland and Leinhardt, 1981) who built on statistical foundations 

laid by Bessag (Bessag, 1974) first introduced the ERGM formally in the early 1980s. 

Substantial developments were made by Frank and Strauss (Frank and Strauss, 1986; 

Strauss, 1986) and continued to be made by other authors throughout 1990s and 2000s 
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(Anderson et al., 1999; Robins et al., 1999; Wasserman and Pattison, 1996; Geyer, 1991; 

Snijder, 2001; Snijder et al., 2006; Robins et al., 2007a). 

The ERGM represents a general and flexible methodology for modeling interactions 

among a number of actors in a complex network. This methodology originated and has 

been implemented widely in the literature of social networks. In recent years, there has 

been growing interest in exponential random graph models for social networks, 

commonly called the ݌∗class of models (Pattison and Wasserman, 1999; Robins et al., 

1999; Goodreau, 2007; Robins et al., 2007a). These probability models for networks on a 

given set of actors allow generalization beyond the restrictive dyadic independence 

assumption of the earlier ݌ଵ model class (Holland and Leinhardt, 1981). The exponential 

family of random graphs is also among the most widely used random graph models for 

biological networks (Begum et al., 2013; Przulj et al., 2004; Saul and Filkov, 2007). 

ERGMs can be used to study models of processes taking place on networks, such as 

epidemics spread of, diffusion of information, or opinion formation in social networks 

(Fronczak, 2012). 

ERGMs represent the generative process of tie formation in networks with two basic 

types of processes namely dyadic dependent and dyadic independent. A dyad refers to a 

pair of nodes and the relations between them. Dyadic dependent processes are those in 

which the state of one dyad depends stochastically on the state of other dyads. Dyadic 

independent processes exhibit no direct dependence among dyads. In a dyadic 

independent case, the state of the dyad depends on the attributes of the two nodes, but not 

on the state of other dyads. The distinction between these two types of processes affects 
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the specification, estimation and behavior of ERGMs. Models with only dyadic 

independent terms have a likelihood function that simplifies to a form that can be 

maximized using standard logistic regression methods. Intuition about how these models 

behave is usually straightforward, as for logistic regression models. By contrast, models 

for processes with dyadic dependence require computationally intensive estimation and 

imply complex forms of feedback and global dependence that confound both intuition 

and estimation (Hunter et al., 2008; Handcock et al., 2003). 

Although an ERGM presents a flexible means to model complex networks, the likelihood 

function for parameter estimation involves a mathematically intractable normalizing 

constant. ERGMs generalize the Markov random graph models (Frank and Strauss, 

1986), and edge and dyadic independence models. Several statistical computational 

methods had been proposed to address this difficulty in parameter estimation in an 

ERGM. These are the Markov chain Monte Carlo Maximum Likelihood Estimation 

(MCMCMLE) method and the Maximum Pseudo Likelihood Estimation (MPLE) method 

(Hunter and Handcook, 2006; Robins et al., 2007a; Snijders, 2002). Two special cases of 

ERGM such as dyadic independence models (also known as ݌ଵ models) and more general 

 models are discussed here in order to lay out the theoretical background of such ∗݌

models. 

  ૚ Model࢖   2.2

A special case of an ERGM is known as ݌ଵ model (Holland and Leinhardt, 1981). The 

central building block of these models is the adjacency matrix portraying the 
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interrelationships between the actors (or nodes) in a network. Let ܺ denote the ݒ ∗  ݒ

adjacency matrix with (݅, ݆	) th element defined as,  

௜ܺ௝ = ቄ	1				݂݅	݅	ݏ݁ݐ݈ܽ݁ݎ	݋ݐ	݆,
.݁ݏ݅ݓݎℎ݁ݐ݋				0

 

The ݌ଵ model is derived by decomposing the adjacency matrix ܺ into its (൫௩ଶ൯) dyads or 

pairs ܦ௜௝ = 	 ( ௜ܺ௝ , ௝ܺ௜)	݂ݎ݋	݅	 < 	݆. The distribution of ܺ can be specified with the 

specification of the joint distribution of the ܦ௜௝. Under the assumption that the ܦ௜௝ 	are all 

statistically independent, one needs to specify only the distribution of each ܦ௜௝ 	in order to 

completely specify the distribution of ܺ. The probability distributions of ܦ௜௝ 	are specified 

as follows: 

݉௜௝ = 		ܲ ቀܦ௜௝ = (1,1)ቁ 			݅ < ݆, 

ܽ௜௝ 	= 		ܲ ቀܦ௜௝ = (1,0)ቁ 			݅	 ≠ 	݆, 

݊௜௝ 	= 		ܲ ቀܦ௜௝ = (0,0)ቁ 			݅ < ݆, ܽ݊݀ 

݉௜௝ + 	ܽ௜௝ + 	 ௝ܽ௜ 	+ 	 ݊௜௝ 	= ݅			݈݈ܽ	ݎ݋݂,1	 < ݆ 

Where, ݉௜௝ is the probability that the dyad i, j is a mutual or reciprocated pair; ܽ௜௝ 	is the 

probability that the dyad i,j is an asymmetric or nonreciprocated pair; ݊௜௝ probability that 

the dyad i, j is a null pair. 

The probability distribution of ܺ	is then expressed as follows (Holland and Leinhardt, 

1981). 

ܲ(ܺ = (ݔ = 	ෑ݉௜௝
௫೔ೕ௫ೕ೔	

௜ழ௝

ෑܽ௜௝
௫೔ೕ(ଵି௫ೕ೔	)

௜ஷ௝

ෑ݊௜௝
(ଵି௫೔ೕ)(ଵି௫ೕ೔	)

௜ழ௝

																																																(1) 
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																			= exp ቎෍ߩ௜௝ݔ௜௝ݔ௝௜	
௜ழ௝

+ ෍ߠ௜௝ݔ௜௝	
௜ஷ௝

቏ෑ݊௜௝ 																																																													(2)
௜ழ௝

 

The parameters of this model are expressed as, 

௜௝ߩ = logቆ
݉௜௝݊௜௝
ܽ௜௝ܽ௝௜

ቇ 			݅ < ݆		ܽ݊݀ 

௜௝ߠ = logቆ
ܽ௜௝
݊௜௝
ቇ 			݅ ≠ ݆		 

Note that the parameter ݌௜௝  is a log-odds ratio and the parameter ߠ௜௝ 	is a log-odds. These 

are interpreted as 

exp(ߩ௜௝) =
ܲ൫ ௜ܺ௝ = 1ห ௝ܺ௜ = 1൯
ܲ൫ ௜ܺ௝ = 0ห ௝ܺ௜ = 1൯

ܲ൫ ௜ܺ௝ = 1ห ௝ܺ௜ = 0൯
ܲ൫ ௜ܺ௝ = 0ห ௝ܺ௜ = 0൯

൘  

exp(ߠ௜௝) =
ܲ൫ ௜ܺ௝ = 1ห ௝ܺ௜ = 0൯
ܲ൫ ௜ܺ௝ = 0ห ௝ܺ௜ = 0൯

 

Here ߩ௜௝  measures what Holland and Lienhardt (1981) referred to as the force of 

reciprocation. That is, if ߩ௜௝  is positive and if  ௝ܺ௜ = 1, then it is more likely to observe 

௜ܺ௝ = 1. Also, ߠ௜௝  measures the probability of an asymetric dyad between the nodes ݅ and  

݆ when it is known that ௝ܺ௜ = 0. In order to insure the identifiability of the model 

parameters, a number of restrictions are imposed on  ߩ௜௝  and ߠ௜௝ . These are 

௜௝ߩ = ݅		݈݈ܽ	ݎ݋݂		ߩ < ݆, 

௜௝ߠ = ߠ + ௜ߙ + ௜ߚ ݅		݈݈ܽ	ݎ݋݂		 ≠ ݆, ܽ݊݀	 

ାߙ = ାߚ = 0 

Under these assumptions the ݌ଵ model in (1) and (2) for the adjacency matrix ܺ becomes, 
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ଵ(x)݌ = ܲ(X = x) = exp ቎݉ߩ + ାାݔߠ + ෍ߙ௜ݔ௜ା
௜

+ ෍ߚ௜ݔା௝
௝

቏ × ෑ݊௜௝
௜ழ௝

																				(3) 

Here the ݊௜௝ are functions of the parameters ߠ ,ߩ, {ߙ௜}, and ൛ߚ௝ൟ. 

 Model ∗࢖   2.3

The ݌∗ model is a more general model that includes ݌ଵ model as a special case. In order 

to specify a ݌∗ model, some additional notation is required. 

The general log-linear form of ݌∗ model is expressed as 

																																																											ܲ(X = x) =
exp[ߠ z(x)]

(ߠ)ߢ 																																																				(4) 

Here ߠ is a vector of model parameters, z(x)  is a vector of network statistics, and ߢ(. ) is 

a normalizing constant which is hard to compute for large networks. In order to ease the 

estimation process of the model parameters, the log-linear model form of the ݌∗ model 

can be re-expressed as a logit model. A logit model is a special case of generalized linear 

model where log odds of a binary variable is expressed as linear combination of several 

explanatory variables. In particular, as per Wasserman and Pattison (1996) we define new 

notation: ௜ܺ௝
ା denotes an adjacency  matrix where a tie from ݅ → ݆	 is forced to be present. 

That is ௜ܺ௝
ା = ൛ܺ௞௟ , 	ℎݐ݅ݓ ௜ܺ௝ = 1ൟ. ௜ܺ௝

ି  denotes an adjacency  matrix where a tie from 

݅ → ݆	 is forced to be absent. That is ௜ܺ௝
ି = ൛ܺ௞௟ , 	ℎݐ݅ݓ ௜ܺ௝ = 0ൟ. Finally, ௜ܺ௝

௖  denotes an 

adjacency matrix with complement relation for the tie from ݅ → ݆	. That is, ௜ܺ௝
௖ =

{ܺ௞௟ , .݇)	ℎݐ݅ݓ ݈) ≠ (݅, ݆)}. The ݌∗ model in (4) can be turned to a logistic regression 
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model by considering a set of binary random variables { ௜ܺ௝},  where ௜ܺ௝ = 1 implying a 

tie from ݅	݋ݐ	݆.  

																																								ܲ൫ ௜ܺ௝ = 1|X௜௝
௖ ൯ =

ܲ൫X = x୧୨ା൯
ܲ൫X = x୧୨ା൯ + ܲ൫X = x୧୨ି൯

																																				(5) 

																																								ܲ൫ ௜ܺ௝ = 0|X௜௝
௖ ൯ =

ܲ൫X = x୧୨ି൯
ܲ൫X = x୧୨ା൯ + ܲ൫X = x୧୨ି൯

																																				(6) 

Using expression in (4) and taking the ratio in (5) and (6) one can write 

	ܲ൫ ௜ܺ௝ = 1|X௜௝
௖ ൯

ܲ൫ ௜ܺ௝ = 0|X௜௝
௖ ൯

= exp൛ߠ ൣz(x୧୨ା) − z(x୧୨ି)൧ൟ																																						(7) 

log ቊ
	ܲ൫ ௜ܺ௝ = 1|X௜௝

௖ ൯
ܲ൫ ௜ܺ௝ = 0|X௜௝

௖ ൯
ቋ = ߱௜௝ = z(x୧୨ା)ൣ ߠ	 − z(x୧୨ି)൧																																					(8) 

߱௜௝ =  (9)																																																								௜௝൯ݔ൫ߜ ߠ	

Here ߜ൫ݔ௜௝൯		is the vector of difference statistics obtained from the network statistics z(. ) 

when the variable ௜ܺ௝  changes from 1 to 0. The model in (9) is referred to as the ݈ݐ݅݃݋	݌∗  

model for single binary relation. One can work with either the log-linear form of  ݌∗ 

model given in (4) or the logit form given in (9). 

2.4   Computational Methods 

There are two methods commonly used in the statistics and social/biological networks 

communities to estimate the maximum likelihood fit to exponential random graph 

models. These are the Markov chain Monte Carlo maximum likelihood estimation 

(MCMC MLE) and maximum pseudo-likelihood estimation (MPLE). They can also be 

used for network simulation. These techniques have been recently discussed by various 
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authors (Hunter and Handcook, 2006; Robins et al., 2007a; Snijders, 2002). To date, the 

most common form of estimation for random graph models has been maximum pseudo 

likelihood (Strauss and Ikeda, 1990). The properties of the pseudo-likelihood estimator 

are not well understood, the pseudo-likelihood estimates can at best be thought of as 

approximate, and it is not clear from existing research as to when pseudo-likelihood 

estimates may be acceptable. Monte Carlo Markov chain maximum (MCMC) likelihood 

estimation is the preferred estimation procedure. One of the advantages over maximum 

pseudo-likelihood estimates is that one can also obtain reliable standard errors for the 

estimates (Robins et al., 2007b). 

2.4.1  Maximum Pseudo Likelihood Estimation (MPLE) 

Before the advent of Monte Carlo methods, the only widely used methods for estimating 

parameters in such models were maximum pseudo likelihood estimation (Besag, 1975) 

and the closely related method of 'coding' (Besag, 1974), which maximum pseudo 

likelihood estimation superseded. These methods have been used in preference to Monte 

Carlo methods because they are much faster, requiring no simulations. The estimators 

that they produce are not maximum likelihood estimators (except in the limiting case of 

no dependence); hence the possibility of calculating MLEs leads to the question of 

whether they are so much better than maximum pseudo likelihood estimates (MPLEs) 

that their much greater expense is justified (Geyer and Thompson, 1992). A comparison 

with MLEs shows that MPLEs may seriously overestimate the dependence when it is 

strong. When the dependence is sufficiently weak, the MPLE behaves well and is almost 
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efficient (Besag, 1977), as might be expected since the MLE and the MPLE are the same 

when dependence is absent (Geyer and Thompson, 1992). 

The pseudo likelihood function is simply the product of the probabilities of the ݔ௜௝ with 

each probability conditional on the rest of the data. The method avoids the technical 

difficulty inherent in the maximum likelihood approach.  The pseudo likelihood for 

model (Equation 10) is identical to the likelihood for a logistic regression model in which 

the (binary) response data consist of the off-diagonal elements of x௢௕௦ 	and the predictor 

vectors are given by the change statistics ߜ௭(x௢௕௦	)௜௝ of Equation (14).  

																																								logit	ൣPఏ൫ ௜ܺ௝ = 1| ௜ܺ௝
௖ = ௜௝௖ݔ ൯൧ = ௭(x)௜௝ߜ ߠ 																																					(14)                            

where the logit function is defined by ݈(݌)ݐ݅݃݋ 	= 	1)/݌]݃݋݈	 − and ௜ܺ௝ [(݌	
௖  represents 

the rest of the network other than the single variable ௜ܺ௝. 

Indeed, this is exactly the likelihood that is obtained if one starts with Equation (14) and 

then assumes in addition that the ௜ܺ௝ are mutually independent, so that 

Pఏ൫ ௜ܺ௝ = 1| ௜ܺ௝
௖ = ௜௝௖ݔ ൯ = Pఏ( ௜ܺ௝ = 1) 

 The maximum pseudo likelihood estimator (MPLE) for an ERGM, the maximizer of the 

pseudo likelihood, may easily be found (at least in principle) by using logistic regression 

as a computational device.  When the ERGM in question is not a dyadic independence 

model, the statistical properties of pseudo likelihood estimators for social networks are 

not well understood (Hunter et al., 2008). 
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2.4.2  Monte Carlo Maximum Likelihood Estimation (MCMC MLE)  

Recent developments in Monte Carlo estimation techniques for exponential random 

graph models have been presented and reviewed by a number of authors (Snijders, 2002; 

Handcock et al., 2006; Snijders et al., 2006, Wasserman and Robins, 2005). The Monte 

Carlo techniques proposed by Snijders (2002) and Hunter and Handcock (2006) are both 

based on refining approximate parameter estimates. The approximation proceeds by 

comparing the observed graphs against a distribution of random graphs generated by 

stochastic simulation using the approximate parameter values. If the parameter estimates 

never stabilize (converge), the model is likely to be degenerate. When convergent 

estimates are obtained, then simulation from the estimates will produce distributions of 

graphs. The number of edges can be conditioned when estimating parameters, that is, the 

number of edges is fixed in Monte Carlo estimation procedures (Frank and Strauss, 1986; 

Snijders et al., 2006). In such models there are no density parameters. Fixing the number 

of edges diminishes the risk of degeneracy problems and will also have minor effects on 

other parameter estimates (except perhaps for star parameters). Based on the experience 

of network scholars, that at least with smaller networks, conditioning on edges may 

not be necessary, and estimation procedures may successfully converge for the new 

specifications with density parameters included. 

Maximum likelihood estimates (MLEs) in autologistic models and other exponential 

family models for dependent data can be calculated with Markov chain Monte Carlo 

methods (the Metropolis algorithm or the Gibbs sampler), which simulate ergodic 

Markov chains having equilibrium distributions in the model. From one realization of 
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such a Markov chain, a Monte Carlo approximation to the whole likelihood function can 

be constructed. The parameter value (if any) maximizing this function approximates the 

MLE. When no parameter point in the model maximizes the likelihood, the MLE in the 

closure of the exponential family may exist and can be calculated by a two-phase 

algorithm, first finding the support of the MLE by linear programming and then finding 

the distribution within the family conditioned on the support by maximizing the 

likelihood for that family (Geyer and Thompson, 1992). 

 Approximating an MLE 

The general log-linear form of ݌∗ model is expressed as 

																																																											ܲ(X = x) =
exp[ߠ z(x)]

(ߠ)ߢ 																																																	(10) 

Here ߠ is a vector of model parameters, z(x)  is a vector of network statistics, and ߢ(. ) is 

a normalizing constant (Frank and Strauss 1986; Wasserman and Pattison 1996). 

From the Equation (10), the loglikelihood function can be obtained such that  

(ߠ) 																																																								 = z(x୭ୠୱ) ߠ − log(ߠ)ߢ 																																												(11) 

where x୭ୠୱ denotes the observed network. Rather than maximize  ( ) directly, instead the 

log-ratio of likelihood values will be considered. 

(ߠ) 																																	 − (଴ߠ)  = ߠ) − z(x୭ୠୱ)	 ଴)ߠ − log ቈ
(ߠ)ߢ
 (12)																															቉(଴ߠ)ߢ

where ߠ଴ is an arbitrarily chosen parameter vector. 
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The approximation of ratios of normalizing constants such as the one in expression (12) 

is a difficult but well-studied problem (Meng and Wong 1996; Gelman and Meng 1998). 

The main idea of the ratios of normalizing constants is presented by Geyer and 

Thompson (1992)  which is described below:  

(ߠ)ߢ
(଴ߠ)ߢ = Eఏబ exp ߠ)}	 −  {z(X)	 ଴)ߠ

where Eఏబ  denotes the expectation assuming that X has distribution given by Pఏబ,೉ . 

Therefore, one can exploit the law of large numbers and approximate the log-ratio by 

(ߠ) 							 − (଴ߠ)  ≈ ߠ) − −z(x୭ୠୱ)	 ଴)ߠ log ቂ ଵ
௠
∑ exp ߠ)}	 − z(X୧)}௠	 ଴)ߠ
௜ୀଵ ቃ 														(13)               

where  ଵܺ, . . . ,ܺ௠ is a random sample from the distribution defined by Pఏబ,೉, simulated 

using an MCMC routine. 

The stochastic estimation technique described above requires one to select a parameter 

value ߠ଴. While the approximation of Equation (13) may in theory be made arbitrarily 

precise by choosing the MCMC sample size ݉ to be large enough, in practice it is 

extremely difficult to use this approximation technique unless the value ߠ଴ is chosen 

carefully. Initial guess for ߠ଴ should be “close enough” to the true maximum likelihood 

estimator ߠ෠ or Equation (13) will fail (Hunter et al., 2008). 

2.5   ERGM for Biological Networks  

Biological networks have been investigated using several network models such as the 

Erdos-Renyi model, the geometric random network model, and exponential random 

graph model (ERGM), and graphical models (Begum et al., 2013). In particular, the 



24 
 

Erdos-Renyi and the geometric random network models were used in the study of 

graphlets in Saccharomyces cerevisiae protein-protein interaction (PPI) networks (Przulj 

et al., 2004), and exponential random graph models have been employed to study 

biological databases such as RegulonDB (Saul and Filkov, 2007; RegulonDB Release 7.4, 

2012). The ERGM has also been used to study large social networks (Goodreau, 2007; 

Robins et. al, 2007). 

In this study, the ERGM for biological network data is considered rather than social 

network data. Each node is treated as a biological component such as gene, transcription 

factor, operon, protein, or metabolites. The goal of much of systems biology is to 

understand the functioning of biological systems which, in large part, depends on their 

complex underlying structure. Summarizing a biological system into a network represents 

the study of complex structure via the interactions among its components and the simple 

recurring patterns, or features, which they form. Thus, when studying the systemic nature 

of biological networks many modeling approaches focus on simple, but prominent, 

structural features, as they are easier to understand than the global networks. Once 

identified, these can be used as building blocks for describing the network (Saul and 

Filkov, 2007) under consideration.  

Node degree distribution and small connected sub-graphs (graphlets), are found to 

capture structure in biological networks. However, methods that allow us to 

systematically study these and other local features are needed. Outside biology, statistical 

network modeling has a long history in the social and economic networks literature. (For 

example, the concept of network motifs, small sub-graphs that appear in a graph more 
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often than expected due to chance (Milo et al., 2002), were studied under the name triad 

census in 1970 (Holland and Leinhardt, 1970). However, biological networks are much 

larger than social networks and hence direct application of social network models to 

biological network data has not historically been possible. However, recent advances 

both in understanding of the behavior of these models and enhanced computational power 

make such application to biological networks feasible.  

Many models currently used for biological networks are descriptive, and simply specify a 

feature of a graph. For example, power-law networks (sometimes called scale-free) are 

described as networks with a node degree distribution governed by a power law (Barabasi 

and Albert, 1999). Other biological network models specify a procedure for creating 

networks. Erdos-Renyi random graphs are created by considering each pair of nodes in a 

given node set as a potential edge. For each potential edge, a fair n-sided die is cast, if the 

die comes up above a given threshold, the edge is included. Otherwise, it is not. A more 

general exponential random graph model suits to explore and model complex biological 

interaction data. 

In order to fit models by using ERGM package and R computational environment, 

several network attributes are considered in our model. They are edges, triangles, ostars 

and istars as defined below. In this study, several models with different attributes for both 

observed and simulated networks are considered. In graph theory, one may consider 

several network attributes. The formal definitions of some of the attributes are given in 

the next section.   
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2.6   Definition of Some Network Attributes 

Edges 

edges: This term adds one network statistic equal to the number of edges in the network. 

For undirected networks, edges is equal to kstar(1); for directed networks, edges is equal 

to both ostar(1) and istar(1) (Morris et al., 2008). 

K-In-stars 

istar(k, attrname=NULL):  The k argument is a vector of distinct integers. This term adds 

one network statistic to the model for each element in k. The ݅th such statistic counts the 

number of distinct k[i]-instars in the network, where a k-instar is defined to be a node N 

and a set of k different nodes {ܱଵ, … … … 	ܱ௞} such that the ties ൫ ௝ܱ → ܰ൯ exist for 

݆	 = 	1, … … … , ݇	. The optional argument attrname is a character string giving the name 

of an attribute in the network’s vertex attributes list. If this is specified then the count is 

over the number of k-instars where all nodes have the same value of the attribute. This 

term can only be used for directed networks. Note that istar(1) and ostar(1) both are equal 

to edge  (Morris et al., 2008). 

k-Outstars 

ostar(k, attrname=NULL): The k argument is a vector of distinct integers. This term adds 

one network statistic to the model for each element in k. The ݅th such statistic counts the 

number of distinct k[i]-outstars in the network, where a k-outstar is defined to be a node 

N and a set of k different nodes {ܱଵ, … … … 	ܱ௞} such that the ties ൫ܰ → ௝ܱ൯  exist for 

$	݆	 = 	1, … … … , ݇. The optional argument attrname is a character string giving the name 
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of an attribute in the network’s vertex attribute list. If this is specified then the count is 

the number of k-outstars where all nodes have the same value of the attribute. This term 

can only be used with directed networks; Note that ostar(1) is equal to both istar(1) and 

edges (Morris et al., 2008). 

Triangles 

triangle(attrname=NULL): This term adds one statistic to the model equal to the number 

of triangles in the network. For an undirected network, a triangle is defined to be any set 

{(݅, ݆), (݆,݇), (݇, ݅)		} of three edges. For a directed network, a triangle is defined as any 

set of three edges {(݅ → ݆)	ܽ݊݀	(݆ → ݇)} and either (݇ → ݅) or (݇ ← ݅). The former case 

is called a “transitive triple” and the latter is called a “cyclic triple”, so in the case of a 

directed network, triangle equals ttriple plus ctriple — thus at most two of these three 

terms can be in a model. The optional argument attrname restricts the count to those 

triples of nodes with equal values of the vertex attribute specified by attrname (Morris et 

al., 2008). 

Transitive triples 

ttriple(attrname=NULL): This term adds one statistic to the model, equal to the number 

of transitive triples in the network, defined as a set of edges {(݅ → ݆), (݆ → ݇), (݅ → ݇)}. 

Note that triangle equals ttriple+ctriple for a directed network, so at most two of the three 

terms can be in a model. The optional argument attrname is a character string giving the 

name of an attribute in the network’s vertex attribute list. If this is specified then the 

count is over the number of transitive triples where all three nodes have the same value of 

the attribute. This term can only be used with directed networks (Morris et al., 2008). 
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Cyclic triples  

ctriple (attrname=NULL): This term adds one statistic to the model, equal to the number 

of cyclic triples in the network, defined as a set of edges of the form {(݅ → ݆), (݆ →

݇), (݇ → ݅)}. Note that for all directed networks, triangle is equal to ttriple+ctriple, so at 

most two of these three terms can be in a model. The optional argument attrname is a 

character string giving the name of an attribute in the network’s vertex attribute list. If 

this is specified then the count is over the number of cyclic triples where all three nodes 

have the same value of the attribute. This term can only be used with directed networks 

(Morris et al., 2008). 

 

 

 

 

 

 

 



 

 

Chapter 3 

Biological Network Data 

 

 

 

Biological network data arise in a variety of forms. Nodes in biological networks 

represent biomolecules such as genes, proteins or metabolites, and edges connecting 

these nodes indicate functional, physical or chemical interactions between the 

corresponding biomolecules. Understanding these complex biological systems has 

become an important problem that has led to intensive research in network data analyses, 

modeling, and function and disease gene identification and prediction. Transcription 

Regulatory Interaction Network is considered in this thesis, as these are fundamental 

biological interaction networks. The amount of gene expression depends on how the 

genes are being regulated by TFs. The regulatory network of the model organism 

Escherichia Coli (E.coli) from RegulonDB version 7.41 is considered. There are several 

other potential databases include the range of organisms from bacteria (genome.wisc.edu) 

to yeast (yeastgenome.org), to plants (maizese-quence.org) and mammals (namely 

humans, at genome.gov). These databases are housed at a variety of server locations with 

publicly accessible data sets. 
                                                             
1 http://regulondb.ccg.unam.mx/ 
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3.1 General Introduction on RegulonDB 

A database is a complete collection of information of a certain interest. RegulonDB is a 

regulatory interaction data repository for the model organism E. coli. At the same time, it 

is also a model of the organization of the genes in transcription units, operons and simple 

and complex regulons. From that point of view, RegulonDB is a computational model of 

mechanisms of transcriptional regulation. Regulon research group also updates the 

website on a regular interval. In order to implement our method to a known biological 

network dataset and to obtain comparative results among MCMC MLE and MPLE, the 

regulatory network of E.coli from RegulonDB version 7.4 is considered. In the next 

section, some of the key definitions to give readers a brief overview of different 

biological terms is presented. 

3.2 Key Definition of Biological Network Components 

Some of the key definitions of biological entities belonging to the database are presented 

here. Although in this study we used the Transcription Factor-Transcription Factor (TF-

TF) network, there are several other networks that can be explored similarly. Keeping 

that in mind, we report the definitions of several components below. The detailed 

descriptions can be found at the RegulonDB website.    

Operon 

The first component is Operon. An operon can be defined as the set of one or more genes 

and their associated regulatory elements, which are transcribed as a single unit. The 

classical definition is that of a group of two or more genes transcribed as a polycistronic 
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unit (Jacob and Monod, 1961). However, at the database they extend the definition to 

include the possibility of operons with only one gene. In this case, an operon is a group of 

one or more contiguous genes transcribed in the same direction. It is notable that given 

this definition, an operon must contain a promoter upstream of all genes and a terminator 

downstream. It is relatively common to find operons with several promoters, some of 

them internally located, thus transcribing a partial group of genes. In all the cases so far, 

one gene belongs to only one operon. The graphic display of an operon contains all the 

genes of its different transcription units (TUs), as well as all the regulatory elements 

involved in the transcription and regulation of those TUs. The genome browser shows 

genes and operons, accepting also monocistronic operons. In this definition, there are 

several biological terms. To learn more about these, a biological dictionary would be a 

good resources.   

Transcription unit (TU) 

The next term is Transcription unit (TU). A Transcription unit is a set of one or more 

genes transcribed from a single promoter. A TU may also include regulatory protein 

binding sites affecting this promoter and a terminator. It is notable that a complex operon 

with several promoters contains, several transcription units. Given the definition of an 

operon, at least one transcription unit must include all the genes in the operon.  

Promoter 

The next term is Promoter. A promoter is defined as the part of the DNA sequence where 

RNA polymerase binds and initiates transcription. Moreover, Promoter sequences are 

specific to different sigma factors associated to the RNA polymerase core. A promoter is 
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represented as a stretch of upper-case nucleotide sequence, 60 bases upstream and 20 

downstream from the precise initiation of transcription or +1. In more recent studies, it 

has been identified that there are RNAP binding sites which do not initiate transcription. 

Therefore, these are not promoters since they are not functional.  

Binding site 

The next term is Binding site. The TFs binding sites are physical DNA sites recognized 

by transcription factors within a genome. However, binding sites for transcriptional 

regulators were defined as operator sites. There are several meanings of an operator site. 

In their wider meaning, operator sites are sites for repressors or activators. Later on, the 

term "activator sites" was opposed to "operator sites", where operator sites were limited 

to sites for the binding of repressor regulators. In bacteria, specifically for Sigma 54 

promoters, the term "UAS" for upstream activator sites is also used to refer to activator 

site that functions remotely. A related term is that of enhancers. An enhancer has been 

initially defined as an activator sites, tht functions from far upstream, and which 

functions in either orientations in relation to the promoter.  

Terminators 

A Terminator is the region where transcription ends, and RNAP unbinds from DNA.  

Gene 

The formal definition of gene is a unit of heredity that is transferred from a parent to an 

offspring is held to determine some characteristic. In general, proteins are coded directly 
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by genes. For technical use, a gene is a distinct sequence of nucleotides forming part of a 

chromosome. 

Protein 

Protein can be defined as any of a class of nitrogenous organic compounds that consist of 

large molecules composed of one or more long chains of amino acids or such substances 

collectively, especially as a dietary component.  

Most of the time, regulatory elements occur upstream of operons. However, there is a 

good number of regulatory elements (promoter and binding sites) located inside a 

promoter, defining a different transcription unit.  

An important aspect to keep in mind in order to avoid confusion in the content of a 

database is the fact that the current understanding and characterization of different genes, 

operons and regulatory mechanisms is quite variable. For some genes, their mechanisms 

are very well described, whereas in other cases there is no regulation defined for a given 

promoter, or a promoter has been characterized upstream of a poorly characterized 

operon or transcription unit. Our definitions and conventions affect not only the way 

well-characterized systems are described, but also the way the lack of information is 

taken into consideration. 

3.3 New Additions in Release 7.4 

RegulonDB  Release 7.4 is used in the analysis. It was released on March 29, 2012. New 

additions in this version includes consensus sequences, lengths, and symmetries 

corresponding to 10 TFs. Also updated were the binding sites for 4 TFs that belong to the 
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LysR family (ArgP, IlvY, MetR, and NhaR) and 3 response regulators that correspond to 

two-component systems (BaeR, CitB, and CpxR); DinJ is included in the toxin/antitoxin 

system, and PurR regulates genes involved in purine/pyrimidine biosynthesis. Finally, 

PdhR is involved in central metabolic fluxes and, more recently, has been found to be 

involved in the utilization of glycolate and cell division. 

In addition to the above different strategies were used to identify the characteristics of the 

TFBSs. The regulonDB research group performed alignments of the sequences upstream 

of genes regulated by these proteins and compared orthologous intergenic regions, and 

the research group also used other databases, such as RegPrecise Novichkov et al. 2010. 

In addition, the binding sites of the regulator MetR were corrected based on comparisons 

with homologous sequences reported for Salmonella typhimurium. In all cases 

researchers also analyzed the available experimental evidence that corresponded to each 

regulatory interaction. 

On the other hand, the researchs are continuing with the annotation of allosteric 

regulation of the RNAP by ppGpp and DksA. In this sense researchers have expanded the 

notes for GreB, GreA and DksA. In addition the researchers also have enriched notes for 

different transcriptions factors, such as: AidB, ArgP, AtoC, DcuS, DpiB, Fur, HNS, LacI, 

MalT, MntR, PaaX, PhoB, PutA and SoxS. 
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3.4 Transcription Factor-Transcription Factor (TF-TF) 

interaction Network of E. coli 

In this thesis, TF-TF interaction network data is considered from RegulonDB version 7.4. 

In the original data set (represented as a table) of E.coli in the RegulonDB website there 

are four columns. The first column is the name of the Transcription Factor (TF), the 

second column is TF regulated by TF, third column is Regulatory effect of the TF on the 

regulated gene (+ activator, - repressor, +- dual, ? unknown) and the forth column is the 

evidence of supports the existence of the regulatory interaction. The first two columns are 

considered and it created that TF-TF interaction network. The observed TF-TF network is 

given in Figure 3.1. This diagram was generated with R statistical environment using 

Network package. 

 

Figure 3.1: Observed TF-TF network  

This is a directed network with loops. Here, each TF is considered as the vertex and the 

tie between two TFs as edge. An edge from a TF to another TF represents that the first 
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TF regulates the second TF. We explored this observed network and counted the number 

of several network attributes. In this observed network, there are 387 edges, 114 

triangles, 20 ostar-3, 34 istar-3, 10 ostar-5, and 9 istar-5. Looking at the plot we also can 

say that the network data has two big clusters and several small clusters. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 4 

Simulation Study 

 

 

 

We conduct a simulation study for generating random network under varying conditions. 

We choose conditions by choosing different no. of nodes and network statistics. The 

primary reason behind conducting the simulation is to determine the cut-off points for 

different number of nodes for specific attributes and also to compare our simulated 

models with an observed model. For the comparison part, we create two networks by 

imposing the same number of network attributes to the models and then compare the 

results of estimates we get by fitting ERGM. We consider ostar-5, istar-5, ostar-6, istar-6 

and triangles as our network attributes and then we mimic networks as an observed 

network. We physically impose these attributes into the simulated network by keeping 

the same number of attributes as the observed network. However, we could not able to 

impose exactly same numbers of attributes to our models, but we are very close to the 

observe network as far as the number concerns. We also do not simulate the number of 

edges, because if we simulate triangles, ostars and istars, edges are automatically created. 

We randomly assign these attributes to the simulated models. Moreover, we also simulate 
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networks for different number of nodes (n=20, 50, 100) and determine the conditions for 

these statistics to become insignificant. We determine the cut-off points for single 

attributes and also for combinations of attributes. However, due to the convergence 

issues, we were not able to find the cut-off points in the some cases. We define a cut-off 

point as the value where network attributes become significant to insignificant or vice 

versa. The motivation behind this that is if the biological network behaves almost the 

same as the random network, then if we have observed network with different number of 

nodes, we can say up to which point (approximately) certain statistics become 

insignificant for a given situation.  

We also simulate networks as the Transcription Factor-Transcription Factor (TF-TF) 

interaction network of E.coli. The RegulonDB database (Release 7.4) contains up-to-date 

regulatory interaction networks of the model organism E. coli. The different network 

attributes that we consider are edges, ostar-5s, istar-5s, ostar-6s, istar-6s and triangles. 

We explore the original TF-TF interaction network of E. coli and found that there are 10 

ostar-5s, 9 istar-5s, 10 ostar-6s, 8 istar-6s and 114 triangles, and also in the observed 

model there are 175 nodes with density 0.012. Once we determine the number of 

attributes in the observed model, then we mimic this network and randomly simulate two 

networks. Details are presented in section 4.5. Once we get our simulated network, we 

consider different combinations of attributes (ostars, istars and triangles) and fit the 

models by ERGM. We fit the same models for the observed data by using ERGM and 

then compare the estimates of ERGM for both MCMC MLE and MPLE method.  



39 
 

At the outset of our simulation study, we consider networks with small number of nodes 

and then we move towards higher number of nodes. The simulation studies for different 

number of nodes are summarized below. 

4.1   Simulation with n=20 

For this simulation study, we start with the number of nodes n=20. Since TF-TF 

interaction network of E. Coli is directed in nature, we focus on the directed networks 

only. However, this study can be considered in a similar fashion for undirected network 

as well. With only 20 nodes, we consider reasonably smaller magnitude of network 

attributes such as edges, ostar-3s, istar-3s and triangles as our attributes of interest and 

then fit the models with ERGM to get the estimates and also to determine the cut-off 

points. We start with smaller number of attributes say 2 ostar-3, 2 istar-3 and 2 triangles. 

We increment each attributes one at a time and try to determine the cut-off points. We 

observe that if we have 75-77 or more triangles, 11-12 or more istar-3s and 13-14 ostar-3, 

all the attributes including edges are become insignificant in MCMC MLE method. If the 

network attributes are less than the numbers reported above, we might get that some of 

the attributes are significant at 5% level of significance in the MCMC MLE method. To 

determine the cut-off points we use MCMC MLE method only. However, the estimates 

in MCMC MLE and MPLE method of the network attributes with 77 triangles, 12 istar-3 

and 14 ostar-3 are presented in Table 4.1. 
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Table 4.1: Estimates of the simulated network for n=20 

Network 
Attributes 

MCMC MLE 
Estimates 

MPLE 
Estimates 

P-value (MCMC 
MLE) 

P-value 
(MPLE) 

Edges -2.08935 -1.91030 <1e-04 <1e-04 
Triangle 0.12671 0.14164 0.000383 0.0397 

Ostar-3 0.059177 -0.01626 0.934304 0.5659 

Istar-3 -0.00619 0.01533 0.431438 0.4498 

Simulated network with 77 triangles, 12 istar-3 and 14 ostar-3 is presented in Figure 4.1. 

 

Figure 4.1: Simulated network for n=20 

We also fit several models to determine what are the cut-off points (in MCMC MLE 

method) for individual network attributes along with the edges. We find that for ostar-3 

the cut-off point is 7 and 17. If the number of ostar-3s is 17, ostar-3s are significant. 

Now, if we decrease the number of ostar-3s by 1, ostar-3s become insignificant at 5% 

level of significance. Again, if we increase the number of ostar-3s by 1 from 6, ostar-3s 

become insignificant on an average. We define the cut-off as when a single attributes or 

combination of attributes become significant to insignificant and vice versa. Usually, for 

any specific network attributes, there are two cut-off points, one is lower cut-off point 

and the other one is higher cut-off point. The lower cut-off point is the number for which 
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any specific attribute become significant to insignificant and the higher cut-off point is 

the number for which any attribute become insignificant to significant. The network with 

17 ostar-3s is presented in Figure 4.2. 

 

Figure 4.2: Simulated network with 17 ostar-3s 

The cut-off points (in MCMC MLE method) of istar-3 are 6 and 17. If we add one more 

istar-3 in the network model after 5, istar-3s become insignificant and also increase the 

number of istar-3 after 16, the istar-3 become significant. The network with 7 istar-3 is 

presented in Figure 4.3. 

 

Figure 4.3: Simulated network with 7 istar-3 
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The higher cut-off point for triangles is in between 76-80 in MCMC MLE method. After 

this range both edges and triangles become insignificant. Here, we couldn't find the lower 

cut-off point for triangles in MCMC MLE method due to the convergence issue. The 

network with 79 triangles shows in Figure 4.4. 

 

Figure 4.4: Simulated network with 79 triangles 

For edges it also shows a similar pattern. It becomes significant for small number and 

also become significant for bigger numbers. 

4.2 Simulation with n=50 

In this section we simulate random directed networks for 50 nodes. Here we simulate 

networks with different number of istar-3s, ostar-3s and triangles and try to determine the 

cut-off points. As before, we start with a small number of attributes and gradually 

increase the number. We use MCMC MLE method to determine the cut-off points. For 

the full model including edges, ostar-3s, istar-3s and triangles, our lower cut-off points 

for combination of the attributes are  30-31 for istar-3, 30-32 for ostar-3 and 70 for 
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triangles in MCMC MLE method. The attributes are become insignificant after this 

combination. We couldn’t find the higher cut-off point for the combination of attributes 

because of the convergence issue. The simulated network with 31 istar-3, 32 ostar-3 and 

70 triangles is presented in Figure 4.5. 

 

Figure 4.5: Simulated network with 31 istar-3, 32 ostar-3 & 70 triangles 

We considered the MCMC MLE method to find the cut-off points. For ostar-3s, the 

higher cut-off point is 35. After this number ostar-3s becomes significant. We couldn't 

find the lower cut-off point for ostar-3s, because of the convergence issue. Again just for 

istar-3, the higher cut-off point is 35. After this point istar-3s become significant. The 

lower cut-off point for istar-3s is 3. If we increase the number of istar-3 after 2, the istar-3 

becomes insignificant. On the other hand, for just triangles, we couldn't find the cut-off 

points.  
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4.3   Simulation with n=100 

For n=100 we simulate multiple directed networks with various number of istar-3s, ostar-

3s and triangles. We consider each attribute with edge say edges and triangles, edges and 

ostar-3s and so on. We also consider combination of all attributes i.e. edges, triangles, 

ostar-3s and istar-3s together. Here we also consider the MCMC MLE method to 

determine the cut-off points. However, for n=100 we couldn't find the cut-off point for 

the combination of attributes. The reason behind that is, as we are proceeding to higher 

order networks, the number of possible combinations also increased proportionally. 

Therefore, determining cut-off points becomes tedious. However, we noticed a 

combination for which all network attributes became insignificant except edges. For 26 

istar-3s, 23 ostar-3s and 32 triangles, all the network attributes except edges become 

insignificant. Again, for 23 istar-3s, 24 ostar-3s and 27 triangles, we have all the network 

attributes are significant except ostar-3 at 5% level of significance. The network model 

with 26 istar-3, 23 ostar-3 and 32 triangles looks like Figure 4.6. 

 

Figure 4.6: Simulated network with 26 istar-3, 23 ostar-3 and 32 triangles 
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For ostar-3 the lower cut-off point is 4 and the higher cut-off point is 64. Again for istar-3 

the cut-off points are 5 and 64. For triangles, we couldn't reach into a cut-off point due to 

the convergence issue. 

We summarize our simulation studies for different numbers of nodes in the following 

Table 4.2. 

Table 4.2: Summary of simulation studies for different numbers of nodes 

From the above table, we can say that, the cut-off points for ostar-3s and istar-3s are quite 

similar, although we couldn’t find any conclusive answer for n=50. For ostar-3 and istar-

3, we can say that, the cut-off points spread out with the increase in the nodes i.e. if we 

move forward towards higher orders, the lower cut-off points become smaller and higher 

cut-off points become smaller as well with respect to percentage of the nodes. For n=20, 

the total spread of insignificant region is close to (85-35) = 50% and which is 

approximately 60% for n=100. As we couldn’t find a conclusive result for triangles, we 

cannot make any conclusion in this regard. However, we can say that, for triangles cut-

off points should be bigger than the number of nodes i.e. n. In summary, we can say that, 

 For n=20 For n=50 For n=100 

Trian
gles 

Ostar-3 Istar-3 Trian
gles 

Ostar-3 Istar-3 Trian
gles 

Ostar-3 Istar-3 

Lower  
cut-offs 

- 7 6 - - 3 - 4 5 

% of n 
(apps) 

 35% 30%   6%  4% 5% 

Higher 
cut-offs 

76-80 17 17 - 35 - - 64 64 

% of n 
(apps) 

390% 85% 85%  70%   64% 64% 
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for network data if we increase the order of the nodes, the spread of the insignificant 

region gradually gets bigger for any specific attributes. To determine the exact percentage 

of cut-off points, we have to do similar study for more nodes, then and we can generalize 

the idea.    

4.4   Simulation with n=175 

The E. coli TF-TF regulatory network taken from the regulonDB network has a total of 

175 nodes. In order to mimic this network we simulate directed networks with 175 nodes. 

We start with ostar-3s, istar-3s and triangles. In our observed TF-TF network, we count 

114 triangles, 20 ostar-3 and 34 istar-3. Thus we simulate a directed network having same 

numbers of network attributes. However, the closer we can get to the observed network is 

a network with 122 triangles, 50 istar-3s and 51 ostar-3s. The reason behind that is, if we 

randomly impose 114 triangles, a certain number of istar-3s and ostar-3s already created 

and which is greater than our observed numbers. The directed network with 122 triangles, 

50 istar-3 and 51 ostar-3 is presented in Figure 4.7. 

 

Figure 4.7: 50 istar-3, 51 ostar-3 and 122 triangles 
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As before, we increase the order of ostars and istars sequentially. For ostar-5s, istar-5s 

and triangles, we reach close to our observed model. Ostar-6s, istar-6s and triangles also 

give a very good approximation to our observed model. Therefore, we simulate two 

directed (as TF-TF is directed) networks, one with ostar-5s, istar-5s, and triangles 

(network-1) and the other with network same number of ostar-6s, istar-6s, and triangles 

(network-2). The triangles differ by just 1 for both networks. The detailed comparison 

based on the number of attributes is presented in section 4.7. In the next section, we try to 

fit different modes by using ERGM for both the networks we simulate here and also 

compare the estimates of attributes with the observed TF-TF network attribute estimates.    

4.5   Observed Vs Simulated 

There are several biological domains where graph theory techniques are applied for 

knowledge extraction from data. In this section, we compare our observed TF-TF 

network of E. coli with our simulated model for both MCMC MLE and MPLE methods. 

Since ERGM package cannot handle self loop while model fitting we exclude loops from 

the network. If we have self loops in the network data, the model doesn’t converge. If this 

self pool problem can be addressed, it would be a good extension of the ERGM model.  

Here we consider TF-TF interaction model because it has a relatively smaller number of 

nodes which is comparatively easier to mimic. However, this procedure can be applied in 

similar fashion to simulate networks of more complex organisms. In our observed TF-TF 

model, we have 175 nodes, 114 triangles, 10 ostar-5s, 9 istar-5s, 10 ostar-6s and 8 istar-

5s. An R-script is written to count the number of attributes in the model. Then we 

randomly simulate two different network models to compare the estimates of these 
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network attributes with the observed network. In both cases, we have very close estimates 

of network attributes from the simulated models compared to the actual model. In this 

section, we start with the observed network first and then we move on to our simulated 

networks. In Figure 4.8 and 4.9 we represent the observed TF-TF network with and 

without loops. 

             

 

We consider five models based on the combinations of the attributes. The combinations 

of the attributes and the corresponding estimates in both MCMC MLE and MPLE 

method are reported in the Table 4.3 and 4.4 respectively.  

Table 4.3: MCMC MLE Estimates of the different models for observed network 

Models Network Attributes  Corresponding MCMC MLE Estimates 

1 edges+ostar-5+istar-5+triangle -5.3500647,0.0003852,0.0022043,0.9089341 

2 edges+ostar-5+triangle -5.3356386,0.0003851,0.9355000 

3 edges+ostar-5+istar-5 -4.9965056,0.0003874,0.0044687 

4 edges+ostar-6+istar-6+triangle -5.33e+00,7.797e-05,1.034e-01,9.220e-01 

5 edges+ostar-6+triangle -5.33e+00,7.796e-05,9.385e-01 

 

Figure 4.9: Observed TF-TF 
network without looping 

Figure 4.8: Observed TF-TF 
network with looping 
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Table 4.4: MPLE Estimates of the different models for observed network 

Models Network Attributes  Corresponding MPLE Estimates 

1 edges+ostar-5+istar-5+triangle -5.35, 1.564e-05, 2.204e-01, 9.089e-01 

2 edges+ostar-5+triangle -5.336, 1.551e-05, 9.355e-01 

3 edges+ostar-5+istar-5 -4.997e+00, 1.783e-05, 4.469e-03 

4 edges+ostar-6+istar-6+triangle -5.337e+00, 1.676e-06, 1.034e-03, 9.220e-01 

5 edges+ostar-6+triangle -5.33, 1.667e-06, 9.385e-01 

From Table 4.3, we observe that for MCMC MLE whichever combinations of network 

attributes we consider i.e. edges, istar-5s or triangles, the estimates of that network 

attributes remain approximately same. The numbers on the table represent the 

corresponding estimates of the network attributes separated by commas. For example, for 

edges, we consider edges in all the five models in Table 4.3, and for all cases, we get 

approximately same estimate, which is -5.35. Again we consider ostar-5 in models 1 

through 3, and in each case we get approximately same estimates which is 0.0003852. 

This is also true for the other attributes (i.e. ostar-6, istar-6, triangles) in the Table 4.3 (in 

MCMC MLE method).  

Now in the Table 4.4, we report the estimates that we get for different models in MPLE 

method. Here, we also notice the same feature of the network statistics; the estimates are 

approximately same irrespective of the models or combinations. The reason behind that 

is, the physical numbers of a specific network attributes remain same irrespective 

whatever models or combinations we consider i.e. the number of triangles in a specific 

network model remains same irrespective of the combinations of attributes. Keeping that 

in mind, we summarize the estimates of different attributes that we get from under 

different model into a table (for both MCMC MLE and MPLE methods). The summary 
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of the estimates of attributes of the observed network under different model is presented 

in Table 4.5. 

Table 4.5: Summary table of estimates of the observed network 

Network Attributes MCMC MLE 
Estimates 

MPLE 
Estimates 

Edges -5.3500647 -5.35 
Triangle 0.9355000 9.355e-01 

Ostar-5 0.0003851 1.564e-05 

Istar-5 0.0022043 2.204e-01 
Ostar-6 7.797e-05 1.676e-06 

Istar-6 1.034e-01 1.034e-03 

To compare the estimates of network attributes between the observed and simulated 

network, we randomly simulate two networks by imposing the same number of attributes 

as TF-TF, one with ostar-5s, istar-5s, and triangles (network-1) and the other with 

network same number of ostar-6s, istar-6s, and triangles (network-2). The first one has 

almost same number of network attributes as the observed TF-TF network. It has the 

same number of ostar-5s and istar-5s and 115 triangles which differs by only 1 triangle 

compared to our observed network, as in our observed network we have 114 triangles. 

Then we fit several models with ERGM on our first network (network-1) (Figure 4.10) 

like our observed network reported in Table 4.5. For instance, we consider a model with 

edges, ostar-5, istar-5 and triangles; then we consider another model with just edges and 

ostar-5 and so on. Like the observed network, we notice a similar feature of the network 

attributes that the estimates do not change no matter whatever model or whichever 

combinations we are considering. As long as it is the same network, the attributes under 

that network give the same estimates. Keeping this observed property in mind, we 
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summarize the estimates of network attributes that we get from network-1, under 

different models, in Table 4.6.  

Table 4.6: Summary table of estimates of the simulated network-1 

Network Attributes MLE Estimates MLPE Estimates 

Edges -5.73286 -5.675632 
Triangle 2.90743 2.905757 

Ostar-5 -0.01720 -0.016141 

Istar-5 -0.08434 -0.083797 

 

 

Figure 4.10: Simulated network-1 

In our second simulated network (Figure 4.11), we randomly impose almost the same 

numbers of ostar-6 and istar-6 and triangles. In network-2, the numbers of istar-6, ostar-6 

are exactly similar. However, the number of triangle is 115 which differs by only 1 

triangle compared to our observed network, as in our observed network we have 114 

triangles. Then we fit several models considering all four attributes together and 

individually. In all case, we get approximately same estimates for a specific attributes 

like before no matter whatever model or whichever combinations we are considering. As 
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this property is true for any attribute, we can represent the estimates in a single table. For 

reporting we consider both MCMC MLE and MPLE method. The summary of the 

estimates of attributes that we get from network-2 under different models, is presented in 

Table 4.7. 

Table 4.7: Summary table of estimates of the simulated network-2 

Network Attributes MCMC MLE Estimates MPLE Estimates 

Edges -5.539e+00 -5.4661274 

Triangle 2.570e+00 2.5659793 

Ostar-6 -1.342e-01 -0.1343137 

Istar-6 -8.702e-04 -0.0006957 

The simulated network with ostars, istars and triangles is presented in Figure 4.11. 

 

Figure 4.11: Simulated network-2 

Finally, for comparison purposes, we create two summary tables of estimates of the 

observed and simulated models, one for MCMC MLE and the other MPLE, to compare 

between the estimates we have from the observed model and our simulated models. 

Although we simulate two models considering different attributes, we present them under 
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a single table. The reason behind that is we simulate these models based on the number of 

attributes that we have in the observed TF-TF model. We can make two different tables 

but we present it in a single table so that we can summarize the big picture in a single 

table. The summary tables for MCMC MLE and MPLE is presented in Table 4.8 and 4.9 

respectively. 

Table 4.8: Summary table of estimates OBSERVED Vs SIMULATED  

in MCMC MLE method 

Network Attributes Estimates from 
observed networks 

Estimates from 
simulated networks  

Edges -5.3500647 -5.73286 
Triangle 0.9355000 2.90743 

Ostar-5 0.0003851 -0.01720 

Istar-5 0.0022043 -0.08434 

Ostar-6 7.797e-05 -1.342e-01 

Istar-6 1.034e-01 -8.702e-04 

 

Table 4.9: Summary table of estimates OBSERVED Vs SIMULATED  

in MPLE method 

Network Attributes Estimates from 
observed networks 

Estimates from 
simulated networks  

Edges -5.35 -5.675632 
Triangle 9.355e-01 2.905757 
Ostar-5 1.564e-05 -0.016141 

Istar-5 2.204e-01 -0.083797 

Ostar-6 1.676e-06 -0.1343137 

Istar-6 1.034e-03 -0.0006957 

From the above tables, we conclude that except triangles the rest of the estimates of 

network attributes are very close (for both MCMC MLE and MPLE method). Therefore, 

from the biological point of view, if we can figure out the network and the number of 

certain network attributes in a given model, then it will behave almost same as the 
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random model for most of the cases. Although, to generalize the case we need more 

experiment and also need exploration among higher order of species.  

 From this experiment, we can say that if we want to simulate a biological data, then a 

good way would be to explore the observed data and count the number of statistics that 

we are interested and then physically impose the number of statistic and then compare. 

There are several other ways to simulate network models using several packages on R. 

The simplest way is to take the density of the observed model and simulate it using 

binomial distribution. Also, once a model is fitted by using ERGM package, then you can 

simulate one from the observed fitted model. ERGM takes the estimates of the network 

attributes and simulates a similar type of model. However, in such a case the physical 

number of attributes differs by substantially. Again, we can also simulate networks by 

using Erdos-Renyi model. However, for all the cases the physical number of attributes 

significantly differs. Therefore, from biological point of view, the total number might 

have a significant influence over the whole process. 

4.6   Comparison over other Simulation Methods 

In this section, we simulate several networks by the existing simulation scheme. We 

simulated a network by using Erdos-Renyi modeling scheme where we consider 175 

nodes to create similarity with our observed TF-TF network and then consider the density 

of the TF-TF model. As already mentioned, Erdos-Renyi simulates network by 

considering just the density. After simulating the network models we fit several model by 

ERGM to estimate the attributes of interest so that we can compare the estimate with the 

observed model. As before, the estimates are approximately similar irrespective of 
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combinations or models. The summary of the estimates that we get under different 

models are provided in Table 4.10 (for both MCMC MLE and MPLE). 

Table 4.10: Summary table of estimates from Erdos-Renyi model 

Network Attributes MLE Estimates MPLE Estimates 

Edges -4.438846 -4.42969 

Triangle -0.058951 -0.06431 

Ostar-5 -0.007336 -0.00546 

Istar-5 -0.120974 -0.15166 

Ostar-6 -0.01302 -0.01366 

Istar-6 -0.75202 -0.84257 

The simulate network using Erdos-Renyi modeling scheme is represented in Figure 4.12. 

 

Figure 4.12: Simulated from Erdos-Renyi model 

Similarly, we also simulate a model by using simple binomial density. We consider the 

density of our observed TF-TF network and also keep 175 nodes to keep resembles with 

our observed network. After simulating the network, we fit several model by ERGM to 

estimate the attributes of interest so that we can compare the estimate with the observed 

model. As before, the estimates are approximately similar irrespective of the 



56 
 

combinations or models. The summary of the estimates that we get under different 

models are presented in Table 4.11 (for both MCMC MLE and MPLE). 

Table 4.11: Summary table of estimates from Binomial simulated model 

Network Attributes MCMC MLE Estimates MPLE Estimates 
Edges -4.33561 -4.30465 

Triangle -0.06395 -0.08794 

Ostar-5 -0.01032 -0.04404 

Istar-5 -0.07059 -0.07491 

Ostar-6 -0.10063 -0.25368 

Istar-6 -0.31184 -0.29370 

The simulated network using binomial density is represented in Figure 4.13. 

 

Figure 4.13: Simulated network using binomial probability 

We also simulate two models by using ERGM package on R. There is a built in 

simulation comment in ERGM package on R to simulate networks. To do that, we first fit 

our observed TF-TF network model for edges, istar's ostar's and triangles and simulate 

two models using the fitted models. In our first model we consider edge, ostar-5s, istar-5s 

and triangles and in the other model we consider edge, ostar-6s, istar-6s and triangles. 
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Then we simulate two networks to estimate the attributes of our interest. We observe the 

similar pattern in the estimates that as long as we consider the same network, estimates of 

a certain attributes is always similar. Therefore, we get approximately same estimate for 

whatever combination we consider. That is why we try to present the estimates under a 

single table. The estimates of both MCMC MLE and MPLE method for this simulating 

scheme is presented in Table 4.12. 

Table 4.12: Summary tables of estimates from fitted ERGM models 

Network Attributes MLE Estimates MPLE Estimates 
Edges -5.3318479 -5.332e+00 

Triangle 0.7194116 7.194e-01 
Ostar-5 0.0001207 6.297e-06 
Istar-5 0.0016440 1.644e-03 
Ostar-6 1.484e-05 5.333e-07 
Istar-6 -5.887e-02 -5.887e-02 

Although some of the estimates we get under this fitted simulation scheme are very close, 

the physical numbers of statistics differ substantially. In this scheme, as the simulation 

scheme takes the fitted estimates into account, the physical number of different attributes 

should be close to the observed model. In particular, in biological simulation this is very 

important since the exact numbers of network statistics might have a significant influence 

on the overall process. In the next section, we physical counted these numbers of network 

attributes for different simulation models.   
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The simulated graph that we get from this scheme is presented in Figure 4.14. 

 

Figure 4.14: Simulated network from fitted ERGM model 

4.7   Comparison of Network Attributes 

In the previous sections, we simulated several networks by using our process and several 

other schemes. In Table 4.13 we represented the number of different attributes under 

different simulation schemes that we considered in sections 4.5 and 4.6. 

Table 4.13: Summary table of estimates OBSERVED Vs SIMULATED 

Network 
Attributes 

Observed 
TF-TF 

network 

Our 
Simulated 
network 

Simulation 
using 

density 

Erdos-
Renyi 

simulation 

ERGM 
fitted 

simulation 
Edges 263 327 377 375 247 

Triangle 114 115 12 9 82 

Ostar-5 10 10 17 6 7 

Istar-5 9 9 12 8 2 

Ostar-6 10 10 6 2 1 
Istar-6 8 8 3 1 3 
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From the table, we can say that the network attributes are different for all the simulation 

schemes. In our process as we are physically imposing the attributes, it is really close to 

the observer model. The only difference in the attributes is for the triangles which differ 

by just 1. From the table above, we can say that, in terms of number, the ERGM 

simulated network is giving us close result. However, the numbers of triangles 

substantially differ from the original observed model. For the simple binomial simulation, 

we simulate network by considering the density from the observed model. However, the 

edges under this scheme do not even come close and the other attributes also significantly 

differ. We find similar characteristic for Erdos-Renyi modeling scheme. The reason 

behind this could be that both the binomial and Erdos-Renyi consider the density only 

while simulation. Thus, the number of attributes along with the edges are very close. Also 

in the ERGM simulation scheme, the other attributes such as istar-5s or ostar-5s are also 

not very close. In our random simulation, we emphasize on the number of attributes 

because a biological process is a very complicated process. A single edge might have 

significant influence over the entire process. Therefore, for biological simulation, we 

should always keep in mind the physical number of attributes that we are interested in. 

 

 

 

 



 

 

Chapter 5 

Further Directions and Conclusion 

 

 

 

5.1   Further Directions 

There are several ways to extend this study. In this study, an extensive simulation was 

conducted to explore the role and significance of network attributes in ERGM under 

several types of set-ups. While performing this simulation study, several issues arose that 

can be addressed in future. The first issue involved employing Bayesian method to see 

how the estimates differ from the MCMC MLE and MPLE methods. Moreover, ERGM 

cannot handle self loops. Therefore, inclusion of self loops may improve the estimates of 

ERGM. Specially, in biological networks the inclusion may have significant impacts on 

the estimates associated with overall biological processes. The other issue involved 

observations that some of the models did not converge using ERGM package. 

Exploration of the problem in convergence could potentially be accomplished using 

similar simulation techniques. 
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5.2   Conclusions 

The number of commonly used network attributes such as istars, ostars and triangles in 

the TF-TF regulatory network of E. coli was determined. These networks attributes 

statistically serve as the significant local structures for the E. coli regulatory network. An 

observed regulatory network of the model organism E. coli was explored in terms of 

finding statistically local structure in this study. Simulation of two network models and 

comparison of the estimates of the observed and simulated models were made. In the first 

simulated model simulated with istar-5s, ostar-5s and triangles in the model, and in the 

second simulated model simulated with ostar-6s, istar-6s and triangles. In both cases, the 

estimates we obtained are very similar with the observed TF-TF network just except 

triangles. Networks were also simulated in other ways using existing methods were 

compared using these estimates as well. At the end, our models provide close results and 

same number of network attributes, which is very important in the biological data. In fact, 

in biology it is very important to keep the numbers the same because the numbers might 

have influence over the entire biological process. Therefore, it can concluded that at least  

for E. coil, the network can reproduced by taking the counts for different attributes, and 

the simulated network will behave as the observed network. To generalize this across 

species, the same techniques need to be applied across the species and in more complex 

organisms. If the technique works properly with higher order organisms, then the 

technique can be applied to generalize the ideas across the species.     

Simulation of different networks with different number of nodes and network attributes 

were performed. The cut-off points were determined for a number of attributes at which 
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point specific attributes become significant to insignificant, or vice versa. It was observed 

that for smaller numbers of network attributes, the estimates usually become significant. 

If the number of attributes were increased in a given model, the attributes become 

insignificant, yet with very large numbers of attributes become significant again. 

Therefore, for a higher order of number of node, it becomes a difficult to determine with 

a number as the number of combinations get large. However, for those cases a number 

can be determined where the attributes become insignificant after a certain combination. 

Thus the attributes were considered separately just with edges and together in a combined 

model. 

It was also observed that the models in ERGM do not always converge. This would be a 

desirable upgrade for the computational method and would allow for addressing the 

convergence issue. For the several models considered, convergence failure occurred 

while estimating parameters for any of the methods. For example, for our observed 

network, the model with edges, istar-4, ostar-4 and triangles did not converge. Also, due 

to the convergence issue, cut-off points could not be determined for several network 

attributes. In addition, if the network has self loops then the model did not converge. 

Therefore, while the ERGM shows promise, these issues remain in need of further 

analysis. 
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Appendices 

 

 

 

############################################### 

# counting ostar-3 in a given square martix                      # 

############################################### 

 

countostarr<-function(M,r) 

{  

  countvec<-0 

  for (i in 1:nrow(M)) 

  { 

    ifelse (sum(M[i,])>=r, countvec<-countvec+1,countvec<-countvec+0) 

  } 



  countvec 

} 

 

############################################### 

# counting istar-3 in a given square martix                       # 

############################################### 

 

countistarr<-function(M,r) 

{  

  countvec<-0 

  for (i in 1:nrow(M)) 

  { 

    ifelse (sum(M[,i])>=r, countvec<-countvec+1,countvec<-countvec+0) 

  } 

  countvec 

} 



 

################################################# 

# counting ctriple in a given square martix                            # 

################################################# 

contctriple<-function(M){ 

  count<-0 

  for (i in 1:ncol(M)){ 

    for (j in 1:ncol(M)){ 

      if (M[i,j]==1) { 

        for (k in 1:ncol(M)){ 

          if (M[j,k]==1 & M[k,i]==1){count<-count+1} 

        } 

      } 

    } 

  } 

  count/3 



} 

 

 

 

 

################################################# 

# counting ttriple in a given square martix                             # 

################################################# 

conttriple<-function(M){ 

  count<-0 

  for (i in 1:ncol(M)){ 

    for (j in 1:ncol(M)){ 

      if (M[i,j]==1) { 

        for (k in 1:ncol(M)){ 

          if (M[j,k]==1 & M[i,k]==1){count<-count+1} 

        } 



      } 

    } 

  } 

  count 

} 

 

 

 

############################################################## 

# counting triangle in a given square martix                                                   # 

############################################################## 

tri<-function(M){ 

  count<-0 

  count1<-0 

  for (i in 1:ncol(M)){ 

    for (j in 1:ncol(M)){ 



      if (M[i,j]==1) { 

        for (k in 1:ncol(M)){ 

          if (M[j,k]==1 & M[k,i]==1){count<-count+1} 

          if (M[j,k]==1 & M[i,k]==1){count1<-count1+1} 

        }  

      } 

    } 

  } 

  count/3+count1 

} 

 

 

############################################################ 

#Assigning random number of ostar-r in a n*n adjence matrix                   # 

############################################################ 

ass.ostr.null<-function(r,n,m){ 



  Adj.Mat<-matrix(0,n,n) 

  for(i in sample(1:n,m)){ 

    done<-FALSE 

    while(done==FALSE){ 

      sam<-sample(1:n,r) 

      ifelse(any(sam==i),done<-FALSE, done<-TRUE)   

    } 

    Adj.Mat[i,sam]<-1 

  } 

  Adj.Mat 

} 

 

 

 

 

 



###################################################################### 

#Assigning random number of ostar-r in a specific n*n adjence matrix                          # 

###################################################################### 

assig.ran.ostarr<-function(r,M,m){ 

  for(i in sample(1:nrow(M),m)){ 

    done<-FALSE 

    while(done==FALSE){ 

      sam<-sample(1:nrow(M),r) 

      ifelse(any(sam==i),done<-FALSE, done<-TRUE)   

    } 

    M[i,sam]<-1 

  } 

  M 

} 

 

 



############################################################# 

#Assigning random number of ctriple in a n*n adjence matrix# 

############################################################# 

library(combinat) 

ass.ctripl<-function(n,m){ 

  Adj.Mat<-matrix(0,n,n) 

  posibl<-t(combn(n,3)) 

  s<-posibl[sample(nrow(posibl),m),] 

  for(i in 1:nrow(s)){ 

    sam<-sample(3,3) 

    Adj.Mat[s[i,sam[1]],s[i,sam[2]]]<-1 

    Adj.Mat[s[i,sam[2]],s[i,sam[3]]]<-1 

    Adj.Mat[s[i,sam[3]],s[i,sam[1]]]<-1 

  }      

  Adj.Mat 

} 



############################################################# 

#Assigning random number of ttriple in a n*n adjence matrix                     # 

############################################################# 

library(combinat) 

ass.ttrip<-function(n,m){ 

  Adj. Mat<-matrix(0,n,n) 

  posibl<-t(combn(n,3)) 

  s<-posibl[sample(nrow(posibl),m),] 

  for(i in 1:nrow(s)){ 

    sam<-sample(3,3) 

    Adj.Mat[s[i,sam[1]],s[i,sam[2]]]<-1 

    Adj.Mat[s[i,sam[2]],s[i,sam[3]]]<-1 

    Adj.Mat[s[i,sam[1]],s[i,sam[3]]]<-1 

  }      

  Adj.Mat 

} 



 

############################################################# 

#Assigning random number of triangle in a n*n adjence matrix                  # 

############################################################# 

library(combinat) 

ass.try.null<-function(n,m){ 

  Adj.Mat<-matrix(0,n,n) 

  posibl<-t(combn(n,3)) 

  s<-posibl[sample(nrow(posibl),m),] 

  for(i in 1:nrow(s)){ 

    sam<-sample(3,3) 

    Adj.Mat[s[i,sam[1]],s[i,sam[2]]]<-1 

    Adj.Mat[s[i,sam[2]],s[i,sam[3]]]<-1 

    sam1<-sample(c(1,3),2) 

    Adj.Mat[s[i,sam[sam1[1]]],s[i,sam[sam1[2]]]]<-1 

  }      



  Adj.Mat 

} 

###################################################################### 

#Assigning random number of triangle in a specific n*n adjence matrix                        # 

###################################################################### 

library(combinat) 

ass.try<-function(M,m){ 

  posibl<-t(combn(nrow(M),3)) 

  s<-posibl[sample(nrow(posibl),m),] 

  for(i in 1:nrow(s)){ 

    sam<-sample(3,3) 

    M[s[i,sam[1]],s[i,sam[2]]]<-1 

    M[s[i,sam[2]],s[i,sam[3]]]<-1 

    sam1<-sample(c(1,3),2) 

    M[s[i,sam[sam1[1]]],s[i,sam[sam1[2]]]]<-1 

  }      



  M 

} 

######################################################################## 

#counting commom triangle with combination so that we can figure the no. has               # 

#   1>2>3 and 3>2>1 both                                                                                                   #             

######################################################################## 

library(combinat) 

tri.comn<-function(M){ 

  count<-0 

  posibl<-t(combn(nrow(M),3)) 

  for (i in 1:nrow(posibl)){ 

    if (M[posibl[i,1],posibl[i,2]]==1 & M[posibl[i,2],posibl[i,3]]==1 & 

M[posibl[i,3],posibl[i,1]]==1) { 

      if (M[posibl[i,1],posibl[i,3]]==1 & M[posibl[i,3],posibl[i,2]]==1 & 

M[posibl[i,2],posibl[i,1]]==1){count<-count+1} 

    } 

  } 



  count 

} 

########################################################## 

# assigning istar-r in a square martix of n*n dimension                         # 

########################################################## 

as.istr.null<-function(r,n,m){ 

  Adj.Mat<-matrix(0,n,n) 

  for(i in sample(1:n,m)){ 

    done<-FALSE 

    while(done==FALSE){ 

      sam<-sample(1:n,r) 

      ifelse(any(sam==i),done<-FALSE, done<-TRUE)   

    } 

    Adj.Mat[sam,i]<-1 

  } 

  Adj.Mat 



} 

################################################################### 

# assigning istar-r in a specific square martix of n*n dimension                              # 

################################################################### 

as.ran.istr<-function(r,M,m){ 

  for(i in sample(1:nrow(M),m)){ 

    done<-FALSE 

    while(done==FALSE){ 

      sam<-sample(1:nrow(M),r) 

      ifelse(any(sam==i),done<-FALSE, done<-TRUE)   

    } 

    M[sam,i]<-1 

  } 

  M 

} 

 



############################################################ 

#Assigning the statistics altogether n*n adjence matrix                              # 

############################################################ 

 

altogether<-function(r,n,os,is,tr){         # here n is the dimesion, r is the ostar-r or istar-r 

  Adj.Mat<-matrix(0,n,n)                    # os is the # of ostar-r, is is the # of istar-r and tr is 

3 of triangle 

  while (countistarr(Adj.Mat,r)!=is & countostarr(Adj.Mat,r)!=os & tri(Adj.Mat)!=tr){ 

    for(i in sample(1:n,os)){ 

    done<-FALSE 

    while(done==FALSE){ 

      sam<-sample(1:n,r) 

      ifelse(any(sam==i),done<-FALSE, done<-TRUE)  # this do loop is to create ostar-r 

    } 

    Adj.Mat[i,sam]<-1 

     



  } 

  Adj.Mat 

  for(j in sample(1:n,is)){ 

    done<-FALSE 

    while(done==FALSE){ 

      sam<-sample(1:n,r) 

      ifelse(any(sam==j),done<-FALSE, done<-TRUE)    # this do loop is to create istar-r 

    } 

    Adj.Mat[sam,j]<-1 

  } 

  Adj.Mat 

  posibl<-t(combn(n,3)) 

  s<-posibl[sample(nrow(posibl),tr),] 

  for(k in 1:nrow(s)){ 

    sam<-sample(3,3)                                 # this do loop is to create triangles 

    Adj.Mat[s[k,sam[1]],s[k,sam[2]]]<-1 



    Adj.Mat[s[k,sam[2]],s[k,sam[3]]]<-1 

    sam1<-sample(c(1,3),2) 

    Adj.Mat[s[k,sam[sam1[1]]],s[k,sam[sam1[2]]]]<-1 

  }      

  Adj.Mat 

} 

Adj.Mat 

} 

 

aa<-altogether(2,20,1,1,2) 

tri(aa) 
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