DISCLOSING DIETARY DIFFERENCES: IMPLICATIONS OF SOCIAL
STRATIFICATION AND FEASTING AT THE CURRY SITE (22OK578) IN
OKITIBBEHA COUNTY, MISSISSIPPI

A THESIS
SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE
MASTER OF ARTS

BY
SIDNEY TRAVIS

DR. S. HOMES HOGUE – ADVISOR

BALL STATE UNIVERSITY
MUNCIE, INDIANA

MAY 2020
Table of Contents

Table of Contents .. 2
Table of Figures... 3
ACKNOWLEDGEMENTS .. 5
INTRODUCTION ... 7
MISSISSIPPIAN PERIOD CULTURAL HISTORY ... 10
 The Late Woodland Period .. 10
 Middle Mississippian Communities .. 12
 Social Organization, Ritual, and Subsistence Dynamics ... 21
 Feasting .. 25
 Specific Subsistence Cases ... 32
 Similarities Between Domestic and Feasting Assemblages .. 37
 Conclusion ... 38
A SUMMARY OF THE CURRY SITE (22OK578) .. 40
THEORETICAL PERSPECTIVE ... 48
 Description and Definition .. 48
 Ideational and Phenomenological Units ... 50
 Modes and Dimensions ... 52
 Taxonomic and Paradigmatic Classifications ... 52
 Current Issues in Feasting and Status Research ... 53
METHODS ... 56
 Measures of Variability .. 59
 Dimensions of Variability .. 63
RESULTS .. 71
 NISP and MNI ... 73
 Deer Utility Index ... 79
 Butchering ... 82
 Fragmentation .. 84
 Rare/Exotic Species .. 86
 Seasonality ... 89
DISCUSSION .. 91
WORKS CITED ... 99
Table of Figures

Figure 1: Map of the Mississippian World (copied from Pauketat 2007) .. 14
Figure 2: Location of the Curry Site ... 40
Figure 3: Curry Site Zones .. 42
Figure 4: Deer Utility Indices (copied from Kelly 1997:71) ... 60
Figure 5: Hypothetical Status and Feasting Dimensions of Faunal Assemblage Variability .. 69
Figure 6: Bone Awl .. 78
Figure 7: Antler Tools: (Left) Bone Awl, (Right) Drilled Interior ... 79
Figure 8: Deer Utility Indices for the Curry Site ... 80
Figure 9: Curry Site Deer Utilities .. 82
Figure 10: Curry Site Butchery Log Difference Scales .. 84
Figure 11: Deer Fragmentation NISP % .. 86
Figure 12: Ulna of a Trumpeter or Tundra Swan ... 88
Figure 13: Peregrine Falcon Phalanx ... 89
Figure 14: Composite Score Scatter Plot of Status and Feasting Continuums 95
Table of Tables

Table 1: Similarities and Differences Between Sites Compared to The Curry Site20
Table 2: Soil Types and Zones of the Curry Site ..42
Table 3: List of Features (Palmer 2007) ..44
Table 4: Radiocarbon Dates for the Curry Site (Palmer 2007:74) Error! Bookmark not defined.
Table 5: Relationships between Measures of Variability and the Dimensions of Status and Feasting ...65
Table 6: Status Dimension Scoring System ..68
Table 7: Social Eating Dimension Scoring System ..68
Table 8: Hypothetical Composite Scores for the Periods of Use ...69
Table 9: Total NISP and MNI for the Curry Site ...72
Table 10: NISP and MNI for Zone E ..75
Table 11: NISP and MNI for Zone D ..76
Table 12: NISP and MNI of the Transitional Zone ...77
Table 13: NISP and MNI Results from Zone C ..77
Table 14: Curry Site Taxonomic Class Representations ..78
Table 15: Curry Site Deer NISP ...83
Table 16: Total Assemblage Bone Fragmentation NISP % ..85
Table 17: Deer Skeletal Part Distribution ..86
Table 18: Curry Site Seasonality Summary ...90
Table 19: Summary of Status (X) and Feasting (Y) Scores ...94
ACKNOWLEDGEMENTS

I would like to first thank my husband Zac for supporting me on achieving my career dreams. Your constant love, affection, and support helped me overcome some of the hardest moments as a student and as an individual. The support and companionship of my cohort made getting through those tough weeks feel like it was all worth it. I thank you guys for always allowing me to talk through my problems and offer advice. Finally, I would like to thank my family and friends for loving and supporting me even though they have no idea what I do.

I am immensely fortunate for having the opportunity to work with my committee: Dr. S. Homes Hogue, Dr. Kevin Nolan, and Dr. Mark Hill. I thank you all for providing me the opportunity to not only work with you, but to work towards something that will benefit my future. They provided advice, edits, helpful articles, and materials to make my thesis possible. I would also like to thank Jess and Sam at the William R. Adams Zooarchaeology Lab at Indiana University. They permitted me to use the lab, but they also both provided me the light I needed to complete my faunal identifications during a 40-building power outage during my visit.

Special thanks to Sean Coughlin for believing in me from the start. From the first day you walked into the lab, you took me under your wing and provided me the opportunities and materials I needed to grow as a zooarchaeologist. I thank you for
helping me identify specimens after those long days in the field and providing me the chance to further my career goals. I'm happy to call you my colleague and my friend.
INTRODUCTION

Mississippian societies are well known for their sociopolitical hierarchies that developed primarily through the intensification of agriculture (e.g. Jackson and Scott 1995; Peres 2017; Wesson 1999). Increased production of food, mainly consisting of maize, is believed to be an integral part of the transition from the Late Woodland Period to the Mississippian Period that led to changes in the political, social, and economical realms of societies from AD 1050 to 1450, prior to European contact. Ultimately, this transition affected food systems across the Southeast and Midwest (Earle 1997; Fried 1967; Jackson and Scott 1995, 2003; Kelly 1997,2004).

Research has suggested that elites (individual’s with high status and wealth) during this time used their power to create uneven distribution of food in favor of themselves (Blitz 1993:81; Wesson 1999:145). Their control over various animals particularly created differences in subsistence between elites and commoners within these societies. Explorer accounts observed these meat consumption differences (Swanton 1946), but archaeologically this is more difficult to discern due to multiple factors such as mound destruction and poor bone preservation (Knight and Steponaitis 1998).

Another issue involved in understanding of these differential food systems is associated with the focus on larger socially stratified faunal assemblages located in substantial communities with multiple mounds such as Moundville (Jackson and Scott 1995, 2003; Knight 2004) and Cahokia (Kelly 2001; Pauketat and Emerson 1997),
which makes single mound sites highly underrepresented in the Mississippian literature on status. However, some researchers at sites such as the Pocahontas Site (Hogue and McCain 2006; Hogue and Rafferty 2006), Lubub Creek (Blitz 1993), and the Yarborough Site (Jackson and Scott 1995) are seeking a better understanding of what people ate and if it is influenced by social stratification in the area.

I focus on the topic of diet in Mississippian societies by analyzing differences developed through socioeconomic statuses and feasting. I examine a faunal assemblage associated with the Curry Site (22OK578), a Middle Mississippian single mound located in Oktibbeha County, Mississippi. The site was interpreted to exhibit functional changes transitioning from a domestic dwelling to a social gathering location. This is supported with evidence of an additional construction period in place of the structure representing a midden containing mostly deer and lithic debitage (Palmer 2007). Analyzing this faunal assemblage will generate the necessary data to better understand more about the functional change that occurred on the mound and its implications on status exhibited during the Mississippian Period at smaller single mound sites.

After I collected data on the Curry Site, I analyzed bone processing intensity, presence of rare/exotic species, element representations with a focus on deer, and seasonality, all of which are dimensions used to measure different patterns depicted in Mississippian faunal assemblages (Jackson and Scott 2003; Kelly 1997; Knight 2004; Hogue and McCain 2006; Hogue and Rafferty 2006). Each of these measures were used for the three periods of use discussed by Palmer (2007) that are contained by three separate zones. New to zooarchaeological data, these measures work as
dimensions on the feasting and status continuum that allow variation to exist within and between each assemblage. Results show that the measures do not follow extremes currently use by archaeologists when identifying faunal refuse and provide new and interesting results to the archaeological literature. I found that, according to the zooarchaeological assemblages, the change in function is opposite to what Palmer (2007) hypothesized.
MISSISSIPPIAN PERIOD CULTURAL HISTORY

The Late Woodland Period

Before a discussion on Mississippian Period research, it is important to talk about how the Mississippian Period came to be based on characteristics and patterns of the Late Woodland Period. The Late Woodland Period (A.D. 400-1000) was characterized as a period of cultural change. This is due to the decreased use of mound centers and long-distance trade routes that were in place during the Middle Woodland Period. However, this depiction is mostly likely because of the preference in researching more complex mound constructions and mortuary complexes of the Middle Woodland and Mississippian Periods. Instead of being a period of decline, the Late Woodland Period represents a period of cultural change in the Southeast (Anderson and Mainfort 2002).

Concerning pottery, the temper changed from fiber to sand and finally grog tempers through time, with shell temper appearing between A.D. 1000-1050 (Rafferty 2002). Decoration types varied throughout the region, but the most common ones are fabric marked and cord marked pottery. Lithics typologies also shifted within the Late Woodland Period. Stemmed projectile points were the main lithic tool class, but that changed when smaller triangular points took hold with the increased use of the bow and
arrow. These triangular points could be simple triangles or vary between ovate and notched forms (Rafferty 2002).

The Late Woodland Period also exhibited changes in subsistence and settlement patterns that ultimately influenced sedentism. Before the Late Woodland, most sites are small and were occupied for a short period but became increasingly nucleated during into sedentary sites with and without mounds (Rafferty 2002:224). Additionally, these nucleated sites began moving closer towards rivers and their tributaries. However, not all Late Woodland Period communities nucleated (Bense 1994). There is also evidence of the Late Woodland Period having an increase of small settlements that occupy a “variety of landforms throughout the Southeast” (Bense 1994:166)

With the Curry Site being in Northeastern Mississippi, it corresponds with the area referred to as the Northern Gulf Coastal Plain (Rafferty 2002). The Northern Gulf Coastal Plain contains the Western rim of Tennessee, west-central Alabama, and north-central Mississippi. Within this area, the Late Woodland Period is said to have lasted from A.D. 400-1050 (Rafferty 2002:212). Through data collected from 855 sites, Rafferty (2002) found that the most Late Woodland sites were situated on the Tombigbee River, the site size was smaller, and there was evidence of increased sedentism.

The Late Woodland appeared to have continued consumption of Eastern Agricultural Complex (EAC) crops with the introduction of maize use in the Late Woodland (Rafferty 2002:225). Here, maize was most likely used as a supplemental crop. Excavations at the Sander’s Site (O’Hear 1990), Tibbee Creek Site (O’Hear et al. 1981), Lubbub Creek (Caddell 1983), and the Cofferdam site (Blakeman et al. 1976), show little or no evidence of maize production and consumption. This means that maize
was supplemental and not a crucial part of the diet. Faunal remains consist of a larger diet breadth than the Middle Woodland with a focus on deer and supplemented by turkey, various reptiles, and a large variety of fish (Caddell 1983; O'Hear et al. 1981, Rafferty 2002). Depending on the location of the site, additional subsistence is supplemented by various mollusks (O'Hear et al. 1981, Scott 1983).

Lastly, is the social organization and exchange networks represented in the Late Woodland Period. In contrast to the Middle Woodland Period where complex social organization was evident and exchange networks were vast, the Late Woodland Period was opposite. Sites in the Southeast represent a decreased amount of exotic goods found in Late Woodland Period sites with an increased use of local resources (Nassaney and Cobb 1991). This is coupled with the probability of complex social organization still existing but occurring on an interregional scale (Nassaney and Cobb 1991:306).

Middle Mississippian Communities

The Mississippian Period is characterized by larger communities centralizing along the Mississippian River (Pauketat 2004). Though this is the base characterization, not all communities settled this way, which is why there are many other characteristics to describe the changes occurring in the Mississippian Period. The Curry Site is dated to the Mississippian Period located in the region of Middle Mississippian societies. Pauketat (2007:86) developed a map representing the Mississippian world and is
Middle Mississippian examples.
Figure 1: Map of the Mississippian World (copied from Pauketat 2007)
The Middle Mississippian Period in the Southeast ranges from A.D. 900 to 1550 (Wesson 1999) and is characterized by changes occurring during the transition from the Late Woodland period to the Mississippian Period. The periods overlap between A.D. 900-1050, which is labeled as the Terminal Late Woodland Period or the Emergent Mississippian Period (Pauketat 2004). The overlap is an attempt to characterize the variability using the descriptions of patterns depicted in the archaeological record that are shared by both the Late Woodland Period and the Mississippian Period. A similar issue is apparent in the conflation of the Late Woodland Period and the Owasco culture in what is now New York (Hart and Brumbach 2003). From there, The Mississippian Period is understood for its changes in cultural materials and formation of large polities.

Since the beginning of research based on the Mississippian Period, it has been difficult to define its characteristics due to the variation in settlement size, type, and location across the Midwest and Southeast. However, there still are distinguishable traits in ceramics, subsistence, and settlements that work to characterize this period. Early on, Mississippian began trading grog tempers for shell tempers that continued throughout the Mississippian Period. Furthermore, the early Mississippian Period consisted of agricultural intensification, population increases, and movement towards the Mississippian River. Moving closer to and within the floodplains allowed communities to use the fertile soils for farming maize and other crops. In turn, communities became more sedentary and, depending on the location, may have remained small or prospered to create larger settlements.

Generally, Mississippian societies show strong similar preferences for consuming mammals followed by fish and then reptiles (Muller 1997). Assemblages are commonly
dominated by deer (*Odocoileus virginianus*), which were easily accessible and abundant. This is because deer are attracted to open areas that were replicated by humans through the formation of agriculture fields, thus Mississippian agricultural intensification allowed deer to thrive (Muller 1997). The most common fauna found in Mississippian deposits are deer, turkey, rabbits, squirrels, and fish when available (Jackson and Scott 1995, O’Hear et al. 1981, Scott 1983). Other animals were present, but not in abundance. Although these dietary components are typical for all Mississippians, differences on the community level can be analyzed.

Another essential aspect of the Mississippian Period is the development of complex architecture including platform mounds, palisades, plazas, and wall trench houses (Pauketat 2007). These structures were built quickly and maintained with evidence of structures being built on remnants of earlier structures (Pauketat 2007:104). The architectural feats were constructed in settlements both large and small. The smallest of the settlements were single domestic units, hamlets with single mounds, farmsteads, and single mound sites (Rogers and Smith 1995). These were usually occupied by one (single domestic unit) or a few families (hamlets). The larger communities typically had more expansive architecture located in towns and ceremonial centers that could hold populations into the thousands. According to Palmer (2007) the Curry Site more closely resembles a small single mound site that was possibly occupied by a large hamlet or a village. However, with the possibility of the mound function changing through time, the Curry Site may have functioned as multiple settlement types.

The Curry Site is most like Lububb Creek, Lyon’s Bluff, and the White Site. The similarities and differences between these sites and the Curry Site are in Table 1.
Lubbub Creek and Lyon’s Bluff may be occupied at the same time as the Curry Site, but they are more like one another than to the Curry Site. They both have small ceremonial centers surrounded by multiple farmsteads, indicating a possible hierarchical system between high and low statuses (Hogue 2000). Additionally, Lyon’s Bluff and Lubbub Creek contain burials and are much larger than the Curry Site. The Curry Site is only known as a single mound site, with no known farmsteads, burials, nor a ceremonial center. The dissimilarities between these three sites may be due to the Curry Site having excavations that focus on the mound instead of a larger area. Approximately 140 m north of the mound a larger concentration of daub was found that could possibly be related to a building. The White Site is the closest of the three to Moundville and has a higher chance of being part of Moundville. Though the Curry Site is not a tributary to Moundville, both it and Lubbub Creek had pottery similar to Moundville pottery styles. Overall, the Curry Site is unique, only sharing a few similarities with other sites. Additional excavation of the Curry Site may yield more similarities.

Lastly, the characteristics of the Mississippian Period that gains the most research and attention is towards the largest of the settlements: ceremonial centers and Mississippian polities. This is because ceremonial centers used to attract more funding and research. Ceremonial centers can be small or large with multiple mounds, cemeteries, plazas, and palisades that are then surrounded by many farmsteads and towns (Pauketat 2007). Large polities, such as Cahokia and Moundville, function by a two-tiered social hierarchy system with a centralized economy. These polities are sometimes labeled as chiefdoms. “Chiefdoms” are loosely defined as political systems, or “ranked societies” with chiefs and elites at the top in charge of redistributing food and
exchange goods to their communities (Fried 1967; Service 1962). However, the
definition of a chiefdom has greatly varied and is a current issue being dealt with in the
Mississippian literature (Pauketat 2004, 2007).

Cahokia is the largest Mississippian ceremonial center of all Middle Mississippian
communities and is in the American Bottom region of southern Illinois beginning in A.D.
1050. Cahokia is most famous for Monk’s Mound overlooking the Grand Plaza, and as a
polity, it encompassed over 120 primary, secondary, and tertiary mounds covering over
200 km² of land (Pauketat 2004). Cahokia is considered a mega-center that developed
relationships with other societies up to 900 km away (Pauketat and Emerson 1997).
Though this number is debated, Cahokia possibly had around 10,000 people living
within the center and its tributaries (Pauketat 2007; Pauketat and Emerson 1997).
Unfortunately, Cahokia only lasted about 200 years before collapsing due to drought
starting around A.D. 1200 and ending around A.D. 1275 (Benson et al. 2009, 2010;

Located in the Southeast, Moundville was the second largest of the Middle
Mississippian ceremonial centers covering 0.75 km² of land in Alabama. Moundville is
situated on the Black Warrior River and was occupied from A.D. 900-1650 (Knight and
Steponaitis 1998). Moundville had 29 mounds and, like Cahokia ,it had large platform
mounds strategically placed around the main plaza. Eventually, Moundville became a
vacant location for burial rituals with central platform mounds still occupied by elites
(A.D. 1300-1450) and was later abandoned (A.D. 1450-1650) (Knight and Steponaitis
1998).
Overall, there are many characteristics that are visible in the Mississippian Period such as platform mounds, large polities, town formation, and specialized craft production. The Curry Site was most likely not a ceremonial center but was similar to a village or large hamlet that could have been occupied by commoners or elites due to the presence of a mound and a previous structure built on it. What makes Cahokia and Moundville special is the amount of literature focusing on elite life in these communities that can be used to compare elite patterns by Mississippians. The ceremonial centers have (for the most part) been excavated thoroughly, well documented, and published in detail. Because of this, much is known about how elites shape communities using the power given to them. However, this led to an absence of literature on commoner dwellings at the large sites and other smaller sites including single mound sites. This project aims to add information to the side of the literature most often ignored on single mound sites. Already, the Curry Site is very different from other Mississippian sites in the area and may pose more dissimilarities from them and other sites based on the faunal representations analyzed here.
<table>
<thead>
<tr>
<th>Site Name</th>
<th>Dissimilarities to Curry Site</th>
<th>Similarities to Curry Site</th>
<th>References</th>
</tr>
</thead>
</table>
| Lubbbub Creek (A.D. 1000-1600) | • Along Tombigbee River
• 26 ha
• Mound with structures
• Palisades
• Farmsteads
• Burials
• Village/small town | • Single mound
• Remnants of buildings on top of mound
• Mainly undecorated shell temper pottery
• Pottery similar to Moundville tradition
• At least one midden
• Burnished pottery
• Edge of physiographic regions | (Blitz 1993; Hogue 2000) |
| Lyon’s Bluff (A.D. 1290-1690) | • Near Tombigbee River
• 9-10 ha
• Platform mound
• Farmsteads
• Burials
• Village/small town | • Single mound
• At least one midden
• Occupied during same time | (Hogue 2000; Peacock and Hogue 2005) |
| White Site (A.D. 1260-1570) | • Along Black Warrior River
• .74 ha
• Platform mound with structures
• Residential area
• Burials
• Hamlet
• Moundville subsidiary | • Single mound
• Remnants of buildings on top of mound
• At least one midden
• Closer in size
• Mostly occupied during the same time | (Jackson and Scott 2003; Michals 1990; Welch 1991) |
Social Organization, Ritual, and Subsistence Dynamics

It is worth elaborating on elites playing a critical role in shaping Middle Mississippian life, ritual and subsistence. I define an “elite”, along similar lines as Earle (1997:155), as an individual who has high status and ranking within their community through familial lines or through their “title of rank” given to them by the chief (Earle 1997:169). Status refers to the “names of social positions which are assigned conventional attributes and a role that regulates or influences the conduct of interpersonal relationships” (Service 1962:19). In general, elites are either ascribed status or achieve status through individual means. Ascribed status is obtained through ranked kinship ties whereas achieved status uses other non-relational means to gain status. Status can derive from economical, ideological, social, and militaristic control (Earle 1997). In this review, I focus on how some of these status markers influenced changes in Mississippian subsistence that in turn affected diets of those with higher status and those with lower status.

Observations in European and Spanish accounts show that elites are responsible for changes in food storage systems (Swanton 1946). Archaeological evidence in Southeastern Mississippian storage systems do show a dramatic shift from in-home storage to communal storage of surplus goods (Blitz 1993; Hayden 2009a; Wesson 1999). The mechanism in charge of this change was elites’ ability to control how the surplus should be redistributed, which occurred mostly in tributaries related to ceremonial centers (Fried 1967; Wesson 1999). Food surplus was then collected in
granaries near elites, making it easier for elites to oversee the storage and ultimately leave commoners to rely on them for subsistence (Blitz 1993; Muller 1999; Swanton 1911, 1946:372-379; Wesson 1999). Hence, people could no longer store or "hide" their extra food within their houses. Surplus food was then manipulated by elites to signal their social power through feasting, gift giving, extensive trading, and the destruction of goods (Bird and Smith 2005; Bourdieu 1977; Hayden 2009a; Muller 1999; Wesson 1999). This transformation contributed to differences between elite and commoner meat consumption (deFrance 2009; Jackson and Scott 1995, 2003; Knight 2004; Peres 2017). The adaptations to above ground communal storage is just one mechanism elites used to shape social roles in Mississippian societies (Blitz 1993; Muller 1997; Wesson 1999).

If elites were in control of surplus redistribution from communal storage, how did they decide what their subsistence was? From explorer accounts in the Southeast, it was observed that elites were provisioned by their communities through tribute (Swanton 1922). Tribute is the flow of goods and services created by elites for the elites, meaning the commoners must provide tribute to supplement elite diets and public events (Blitz 1993). It is understood that, with the increases in food production, elites are relieved from production duties to focus on other aspects of the community involving ideologies, hosting public events, and managing architectural constructions (e.g. mounds, buildings, monuments, and plazas) (Jackson and Scott 1995; Pauketat 2004). Archaeologically, comparative studies of elite and commoner assemblages exhibit supporting evidence of provisioning deer to elites with mainly the hindlimbs but supplemented by other cuts of meat (Kelly 1997; Michals 1980, 1990). This indicates
that representations of deer elements should display differently between subsistence patterns of elites and commoners in Mississippian communities if tribute was the main source of food for elites.

Elites also affected their community’s subsistence through their creation of ideologies supported by ritualistic activities. Chiefs and other elites were known to have cosmological proximity (Jackson and Scott 1995). This means that chiefs were believed to be gods, or godlike, and above everyone else. Elites also had connections with the supernatural, which they used to create symbols to legitimize this relationship (Jackson and Scott 1995:105). An example of this is represented in the Natchez community and their war feast (Swanton 1911). Described by Du Pratz (1900:408), Natchez war feasts focus around the consumption of dog, which is placed in the middle of the feast to symbolize the warriors’ “fidelity and attachment to their chief”. Elite control in this manner is directed through animal symbolism to display their connections to the cosmos and supernatural (Jackson and Scott 1995; Wesson 1999).

There are three levels of symbols that correlate to divisions of the world in Mississippian ideologies. First is the Upper World where chiefs and elites molded birds as symbols connecting to the supernatural world to represent the predictability and order of the past (Jackson and Scott 1995; Swanton 1911, 1946). Birds regarded with higher superiority over others are eagles, falcons, horned owls, and kingfisher, but all birds were included (Jackson and Scott 1995:106). Next, is This World that consists of deer and other four-legged mammals and is represented as the present. Lastly, the Under World is symbolized by snakes, lizards, and frogs and represents the disorder and unknown of the future. It is interpreted that these worldly divisions and cosmological
connections of elites’ exhibit differences in access and usage of animals. Through evidence of historical accounts this is expressed through specific elite individuals utilizing birds for ornamentation, subsistence, and artistry (Jackson and Scott 1995:106, Swanton 1946). Thus, it is interpreted elites will have more access to birds and have their faunal assemblages rank higher in bird remains than commoner ones (Jackson and Scott 2003).

Elites controlled other types of symbols as well. Rare/exotic taxa include animals which are not from the area, or difficult to find (Jackson and Scott 2003). Additionally, the quality of symbol denoted to the animal it also makes it rare. Dangerous taxa create a symbolic category because it implies the consumption of the animal to gain its power (Jackson and Scott 2003:554). Some examples include bears, cougars, bobcats, and dogs (Jackson and Scott 2003; Swanton 1911, 1946). Based on the rarity of acquiring these animals, it is expected elites would have greater access to them than commoners thanks to their prestige and status markers.

Unfortunately, most of what is known of elite and commoner diets come from large Mississippian polities with an intense focus on elites. The closest polity to the Curry Site is Moundville, but of the two largest Moundville rural sites of commoner dwellings known as PA and ECB tracts, bone preservation was low (Knight and Steponaitis 1998). This makes the assemblage difficult to analyze with accuracy. Thus, Moundville’s elite faunal assemblages are disproportionately represented to commoner domestic evidence. This inequality has led to subjective generalizations of smaller sites by suggesting only large polities took part in wealth and prestige networks. However,
there are some studies aimed to correct this imbalance (Blitz 1993; Hogue and McCain 2006; Hogue and Rafferty 2006; Jackson and Scott 1995; Palmer 2007).

To conclude, there is much known about Mississippian communities, but there are also many unknowns. Due to vigorous research at high priority “interesting” sites, much is known about elites and their role in monitoring communal storage areas and managing subsistence redistribution efforts. Furthermore, from the extensive archaeological elite based research on fauna, archaeologists know that elites are being provisioned by commoners with deer, which means they are dependent on commoners for their own subsistence. Finally, archaeologists know that elites are in control of local ideologies which allow them greater access to symbolic animals compared to commoners. Therefore, the unknowns here pertain to exactly what commoners ate. Currently, it is interpreted that commoners lie on the other side of the spectrum being complete opposites from elites. I believe these extremes do exist, but there is more variation than what a strict dichotomy can show.

Feasting

Feasts are major social events held throughout time around the world. For archaeologists, there are multiple definitions of feasting that focus on differential aspects of the event. Hayden (2001) states that a feast is an event that is shared among two or more people with evidence of special foods. Dietler (2001) attempts to add onto this definition saying that a feast is also a ritualized communal activity, which I assume Dietler means to connect feasts specifically to ideological intentions. This
definition makes feasting too generalized, which means these characteristics are
difficult to differentiate from other types of faunal assemblages. Other authors attempted
to explain feasting further by being more specific towards an individual’s conscious
thought of differentiation between feasting and domestic eating by focusing on the
number of people involved or towards specific “specialty” foods or architecture (Russell
2012; Twiss 2012; Wiessner 2001). All these authors agree that feasting should be
identifiably different from everyday meals, but none of these definitions really help
researchers in defining feasts archaeologically. This is because the most important
aspect of feasting is that feasts are extremely contextual (Russell 2012). To analyze
feasts accurately, archaeologists should consider ethnohistorical information, locality,
and all material culture associated with the faunal remains, and not just the remains by
themselves (Russell 2012). For instance, when the faunal assemblage is not the focal
point, pot size (Blitz 1993), prestige goods (Wesson 1999), and group size (Kassabaum
2019) are also good indicators of feasting activity at the site. All analytical avenues
should be analyzed and compared within and between other sites.

Feasting studies are only a recent focus in prehistoric subsistence, however
Southeastern feasts have been studied since the 1970s (Hayden 2001; Hayden and
Villeneuve 2011). The first analyses of feasts were on Hopewellian charnel houses
(buildings created to house the dead of powerful individuals and families) and were
interpreted to be of intracommunal use (Seeman 1979; Shryock 1987), meaning feasts
in charnel houses were attended by elites and commoners. Later, the focus shifted to
feasts associated with platform mounds and Mississippian ceremonial centers (Kelly
2001; Knight 2001,2004; Jackson and Scott 2003; Welch and Scarry 1995). Since then,
large scale Mississippian societies have remained the focus for feasting interpretations in the Southeast (Jackson and Scott 2003; Knight 2004; Scarry et al. 2016; Welch and Scarry 1995), but ultimately causes other “lesser” enriched sites to be ignored.

With surpluses arising at the same time as elite behavior in the Southeast, some archaeologists believe that surpluses are the main sources use to signal status (Blitz 1993; Swanton 1911, 1946). Elite individuals and families could manipulate their own surpluses to gain favors, collect debt, secure alliances, participate in competitions, and/or to give as tribute (Bird and Smith 2005; Dietler and Hayden 2001). Therefore, both elites and commoners were able and willing to prepare feasts. The more food that is given and prepared, the more status and prestige that comes with a successful feast to the signalers (Wesson 1999). In this case, elites have an advantage over commoners since they could afford and coordinate much larger feasts that would allow them to maintain their status. It is worth mentioning that surplus use for feasts is only one theory used to look at feasting. In the last 20 years, other theories and avenues of research such as the origin of domestication (Hayden 2009a), pottery (Hayden 1995; Rice 1999), funeral feasts (Hayden 2009b), alcohol (Jennings et al. 2005), and luxury foods (Hatsorf 2003) have been developed to understand feasts temporally and geographically.

Unfortunately for archaeologists, feasts are not a visible phenomenon that can be observed in the making. This leaves archaeologists without the ability to understand the reasoning behind a feast, which makes testing some of these theories difficult. Archaeologists are left with observable materials and some historical background, depending on the location and time period, to help researchers learn about prehistoric feasts. Some of these accounts have information on feasting activities for the Southeast.
(Swanton 1911, 1922, 1946). When accounts are not available, archaeologists work to identify patterns in feasts within and between sites by placing them into categories for comparison.

Hayden states that there are six main ways to classify feasts. Only one classification scheme is material-based and applicable to archaeological sites. Hayden states that archaeological feasts use a “various combination of material indicators” to create new distinctions between feasting events (Hayden 2001:40-41). Here, Hayden tries to allow for variation between feasts by listing signatures that are most typical of feasts, but ultimately makes the list too vague. Hayden assumes that all the signatures can indicate feasting, when some signatures could mean other types of food consumption practices elsewhere. Other archaeologists (DeFrance 2009; Perez 2017) have accumulated similar feasting traits but associates the list with the periods of time and sites analyzed.

Dietler agrees with Hayden by noting that there are probably more feasting classifications, but the field is still developing a solid theoretical foundation, thus these efforts are still in the works (Dietler 2001). This shows researchers that not only does the definition of feasting behavior need to be distinguishable from the methods, but also the methods used should be operationalized for future comparable research. Some have attempted to do this by analyzing patterns seen in elite redistribution efforts prehistorically and implementing these measures onto feasting, but still sticking with the dichotomies between domestic eating (of both elites and commoners) and feasting (deFrance 2009:124; Kelly 1997; Knight 2004; Peres 2017:430). Many agree that extremes exist and believe they are good indicators to learn about faunal assemblages.
On the contrary, these extremes limit the variability in assemblages (deFrance 2009; Twiss 2012).

Kassabaum (2019) provides a refreshing look at feasting that is very similar to what I am presenting in this thesis. Kassabaum’s research highlights how feasts cross culturally, mainly within socially hierarchal societies, are highlighted based on competitive social behaviors. Though this realm of research may be helpful, there is more to feasts than competition and focusing on these competitive feasts fail to help researchers understand feasts that are noncompetitive like in the Southeast Puebloan communities. Therefore, Kassabaum (2019:18) presented a new dual-dimensional model to show how a continuum of feasting “avoids the pitfalls of dichotomizing the feast-non-feast distinction”. This model represents two dimensions recognized for feasting that can be tested cross culturally: group size and level of sociopolitical complexity. These dimensions are then used “to define a two-dimensional space in which the location of an eating event is determined by its position along both continua” (Kassabaum 2019:5). This means that four quadrants represent the spaces of variability between “snacks” and “grand feasts” instead of solely focusing on competitive feasts versus noncompetitive feasts (Kassabaum 2019:7). For instance, Kassabaum showed that by allowing variation to exist not all large-scale feasts are competitive. In fact, Kassabaum found that there is evidence for large scale egalitarian communal feasting events focused on building community and strengthening solidarity within a given group. Therefore, her results show that there is room for more theoretical and methodological development in feasting studies that would benefit zooarchaeological research.
An additional study published recently indicates the importance of analyzing faunal assemblages to learn about elite and ritualistic behavior in contrast to secular, or domestic, behavior. Reitz and colleagues (2020) analyzed vertebrate faunal remains at the Irene Mound Site in Georgia in a region known as the Georgia Bight. In general, the deposits contain large quantities of ceramics, shell and fauna. Though the site has experienced a multitude of issues concerning excavation inconsistencies, the loss of excavation data, faunal sampling biases, and an overall lack of fine screening that could potentially inhibit the results of the faunal analysis, the authors still believe it is important to discuss the faunal assemblage. For their analysis, the only measures used were of deer skeletal proportions and an MNI diversity Index, but the authors do go into detail about the presence of various rare/exotic taxa. To aid in their analysis, the assemblage was compared to other assemblages in the Georgia Bight.

Reitz and colleagues (2020) recorded an assemblage of over 16,000 specimens, but they only report on approximately 4,300 of these since they were found within shell layers on the site. The authors found that the assemblage, compared to other sites in the region, had a high amount of taxonomic richness in addition to an above average MNI diversity even though the assemblage was relatively small (Reitz et al. 2020:11). Deer skeletal distributions indicated that the assemblage was overrepresented in forequarter and hindquarter elements and underrepresented in head, axial, and foot elements (Reitz et al. 2020:Figure 3). Lastly, the assemblage had a large quantity of unusual taxa including snakes (e.g. rattlesnake and cottonmouth), birds (e.g. eagle or owl), and other mammals (e.g. dolphin, bear, and dog) that are not typical in the diet and may represent exotic/rare, or dangerous animals that are usually related to
Southeastern iconography (Reitz et al. 2020). Based on these factors and the comparisons to other sites, the authors state that the Irene Mound site faunal assemblage embodies

“special attributes that are uncommon in other tidewater assemblages. Many of these could be symbols of the coastal environment and important elements in a long tradition of estuarine life”. The authors continue to discuss how the assemblage “highlights a regionally significant suite of iconic animals that offer a standard against which to measure the status and function of coastal sites and coastal residents”

(Reitz et al. 2020:15).

Overall, much of the feasting literature of faunal assemblages concentrate on placing assemblages into categories instead of allowing for the variation to exist. Peres (2017) mentions that some assemblages may be labeled as feasts without any attention to the context of the assemblage. This is due to both the weak definition of feasting and the lack of operational measures in place for appropriate site determinations and comparisons (Kassabaum 2019). Recently, some archaeologists have tried to focus on the similarities and differences between domestic eating and feasting by using similar measures such as provisioning and the presence of rare/exotic taxa across all Mississippian assemblages (Jackson and Scott 2003; Kelly 1997, 2001; Knight 2004; Reitz et al. 2020). Nevertheless, they focus on structuring assemblages to fit in these
assumed feasting and non-feasting boxes except for Reitz and colleagues who do view feasting as a continuum. What is interesting about Reitz et al. (2020), is that the authors state that feasting and domestic eating does lie on a continuum, but they do not extrapolate on the dimensions that require variation to exist. Instead, they focus on the descriptive aspects of ritualism, thus continuing the reinforcement of non-operational measures of communal eating. Thus, I direct my attention to how zooarchaeological measures in the Mississippian Southeast can pose “more sophisticated interpretations of material remains” with feasts and domestic eating placed into a continuum along different dimensions with defined related measures (Kassabaum 2019:18).

Specific Subsistence Cases

Elites. Analyses were performed at Moundville on Mound Q and Mound G fauna and suggest domestic sites participating in differing elite subsistence behaviors (Jackson and Scott 2003; Knight 2004). Research has shown elites typically have increased amounts of high utility elements in their refuse piles (Michals 1980, 1990). Jackson and Scott (2003) found that there are significant amounts of high utility elements compared to mid and low utility, with very little to no low utility elements. At Mound Q and G located around Moundville’s plaza, Jackson and Scott (2003) found that elites were provisioned with the best cuts of meat and given little to no “useless” parts. Interestingly, Jackson and Scott did not find the elites at these mounds to have less fragmentation than commoners. Instead, they found that only 15% of the deer long bone remains were more than 50% completed, meaning there was a higher amount of
bone fragmentation involved at these interpreted elite locations than usual. This
evidence supports the fact that strict dichotomies are not always correct, thus calling for
more refined measures and debunking the use of the status extremes.

Both mounds show evidence of many identified taxa (Mound Q with 57 taxa and
Mound G with 36 taxa) containing species of redtail hawk, passenger pigeon, and black
bear. All three of these refer to rare/exotic taxa and the black bear as a dangerous
taxon. Mound Q differentially has more rare/exotic and dangerous taxa than Mound G
with identifications of bobcat, cougar, hawk, and crow. However, Mound G includes
shark, peregrine falcon, and cow/bison. Overall, both show a broad range of varying
taxa that are rare/exotic. Thus, through summarizing the measures used to analyze elite
and commoner dietary differences, Mound Q and G are interpreted as elite domestic
midden deposits. Additionally, the authors add that though they both are elite domestic
deposits, those who lived on these mounds had differential access to animals,
illuminating how there are signals of wealth are different and play a part in how their
diets are represented.

Another site determined to have an elite assemblage is at Lububb Creek. To
briefly reiterate from Table 1, Lububb Creek is similar to the Curry Site, but is
considered a ceremonial center with a small surrounding farmstead village and the
mound had more than one structure on it. Faunal remains were excavated from pit
features, structures, and midden contexts. Many exotic/rare species and small inedible
birds were found such as bobcat bear, crow, parakeet and merlin (Jackson and Scott
1995:113). Additional research on rare/exotic species found that these species were
found in the ceremonial center and the village sites. Deer element representations show
that there is little evidence of lower legs and feet of deer, but with higher than average representations of the long bones, especially of forelimbs (Scott 1982). Surprisingly, Lubbub Creek also had relatively high amounts of fragmentation compared to other elite sites. Unlike Moundville Mounds Q and G, Lubbub Creek does have evidence of provisioning from the farmstead village to the center. The Lubbub Creek faunal results show that, just as Mound Q and G, that the extreme “elite” and “commoner” categories need to be disbanded since the assemblages have variation.

Commoners. An example of commoner domestic eating is of the Pocahontas site faunal assemblage (Hogue and McCain 2006; Hogue and Rafferty 2006). The authors measured deer element utility, long bone fragmentation, taxonomic richness, and seasonality not only to distinguish the assemblage as commoner or elite, but also if the assemblage represents a feast. The lack of high-quality deer provisioning, appearance of high bone processing for marrow, and no symbolic nor rare taxa present led the authors to suggest a commoner dwelling. Moreover, using seasonality measures of deer aging and antler shedding indicated year-round exploitation with an increased deer representation during the summer/fall. Thus, the seasonality indicators determined long-term functional occupation of Pocahontas Mound, whereas feasts are typically deposited in a small time period (Hogue and McCain 2006; Hogue and Rafferty 2006). However, the authors still suggest this site may consist of a feasting midden, but that hypothesis requires additional research into other aspects of the material culture.

The Yarborough Site is a single-family farmstead located in the Tombigbee River Valley. The site was occupied from approximately A.D. 1360-1680 (Scott 1982). The midden was thick and had more faunal remains recovered than all of Lubbub Creek.
Yarborough had higher representations of lower legs, feet, ribs, and crania with lower representations in all other elements (Scott 1982). Based on element representation, it is suggested that the Yarborough site was provisioning nearby elites located Lububb Creek (Scott 1982:148). The identified deer remains and the unidentified large mammal remains are also highly fragmented, further signifying lower status occupation. With the stratigraphy of the midden, researchers could perform seasonality analyses on the based on antler shedding and deer aging. This data showed that the residents abandoned the site once for approximately three months, suggesting that they were mostly sedentary and the midden was not created as one large event (Scott 1982). This data is mostly consistent with what archaeologists consider commoner subsistence.

Feasting. Cahokia’s Sub Mound 51 faunal assemblage in the Mississippi River Valley tells a different story. Kelly (2001) used the same measures as Jackson and Scott (2003) and Hogue and McCain (2006). By looking at fragmentation, the author found that long bone fragmentation is relatively low with no brakeage in forelimb elements, but broken shafts were found on hindlimb elements. Overall, elements do not show evidence of bone shatter (Kelly 2001). Additionally, the deer utility index shows that low utility elements of the feet and skulls are mostly nonexistent indicating the deer being butchered elsewhere. Overall, the utility index does show that the cuts of meat are consistent throughout the deposit, which means the same bulk cuts were being brought to the mound. For taxonomic diversity Kelly (2001) found five species of birds including swans, prairie chickens, and geese, but only swans are considered rare/exotic. The only other rare/exotic taxa found was a drilled alligator tooth. Thus, overall taxonomic diversity is low, but there is a presence of these symbolic taxa. Each
of these measures follow criteria outlined for generalized feasting behaviors. However, the assemblage was deemed as a feasting prep area by looking at other material culture associated with the remains. Therefore, seeing signatures of feasting is possible, but to fully be determined a feast, it is necessary to perform additional research on the entirety of the assemblage.

Not surprisingly, elites are not the only ones to hold feasts in their community. The Grady Bobo site, a rural settlement at Moundville, contains suggestive evidence of commoner feasting. A pit feature contained a refuse midden that was quickly deposited with a large amount of animal, shell, plant, and ceramic remains (Scarry et al. 2016; Scarry and Scarry 1997). Remarkably, the thick shell layer created a cover for the faunal remains, which usually degrade due to the acidity in Alabama soils, to allow for excellent preservation of the remains (Scarry and Scarry 1997:36). The assemblage consisted of meatier portions of deer, and smaller mammals such as opossum and gray squirrel. These portions of meat are suggested to be attributed to feasting as well as provisioning, so seeing this supports possibly feasting activity. What is interesting about this site is the significantly high amount of bird remains being found in a rural settlement. Most of the bird remains led archaeologists to speculate that the bird feathers were used to create headdresses and other adornments or items and discarded (Scarry et al. 2016). These include crow, swan, screech owl, bobwhite, blackbird, grackle, and cardinal. The screech owl is also considered a dangerous taxon (Jackson and Scott 2003:554). Based on these faunal factors, as well as the large amount of ceramics and the quick deposition of the refuse this faunal assemblage is suggested to represent a commoner feasting event.
Similarities Between Domestic and Feasting Assemblages

Elite, commoner, and feasting faunal assemblages are measured along dimensions in which to explain their possible meaning. Therefore, I argue all three categories should be represented as a two-dimensional spectrum of status and social eating to understand their subsistence differences. Thus far, elites are interpreted to have higher amounts of high utility elements and decreased low utility elements. However, fragmentation is less likely to occur in elite practices and more likely in commoner diets. Additionally, elites are currently interpreted to have high taxonomic diversity while commoners are expected to have low diversity. Lastly, elites are expected to have a generally high amounts of rare/exotic species that highlight the connections they have to access these foods (Jackson and Scott 1995, 2003).

Mississippian feasts are recorded as dense concentrations containing refuse materials from mass consumption of fauna consisting mostly of larger animals (Jackson and Scott 2003). Here, taxonomic diversity is generally higher than in domestic middens of commoners and more closely resembling that of elites, but fragmentation and butchery is lower. Using deer utility measures, feasts should have more equal utilities of deer representations by focusing on bulk meat. By framing these subsistence patterns on a continuum, I aim to not reduce the variation to mere noise. By doing this, faunal assemblages can be compared more readily to see finite differences and similarities in Mississippian societies.
Conclusion

With great effort, zooarchaeologists are working to learn more about the foodways between elites and commoners on domestic and feasting patterns. However, these assemblages may be more similar than originally thought. The significance of this research is underrepresented in literature by the sheer lack of analyses on smaller Mississippian sites as well as emphasizing the dichotomy of social status and feasting. Unfortunately, this is difficult with most of the data collected on faunal assemblages being from more dominating sites in the Southeast, especially of elite life (Blitz 1993, Jackson and Scott 1995, 2003; Knight and Steponaitis 1998; Knight 2004). Therefore, my research investigates a Mississippian single mound site to locate patterns in the faunal assemblage that coincide with Mississippian redistribution models. The Curry Site mound displays a change in mound function between the second and third construction periods. Palmer (2007) hypothesized the associated midden represented a feasting refuse pile. Using standard zooarchaeological methodology and a new faunal based subsistence continuum model, I will test Palmer’s hypothesis by analyzing bone processing, provisioning of deer, seasonality and the presence of rare/exotic species. These measures are most commonly used when identifying subsistence differences between status and social eating. I expect these measures to be helpful in identifying a possible change in mound function at the Curry Site that represents another piece to the complexities of Southeastern subsistence and status. To conclude, the extent of knowledge on smaller single mound sites in the Southeast is lacking, and I hope the
Curry Site provides significant information to make this prehistoric picture a little less blurry.
A SUMMARY OF THE CURRY SITE (22OK578)

The Curry Site (22OK578) is within Oktibbeha County, Mississippi (Figure 2). The site consists of a single mound that is located north of the Noxubee River and Near Hollis Creek. This site is also near the border of the Interior Flatwoods and Black Prairie physiographic provinces and drains into the Tennessee-Tombigbee Waterway (previously known as the Tombigbee River) and into the Gulf of Mexico. Within this drainage, the Curry Site is 40km west of the waterway and 15km north of the Noxubee River (Palmer 2007:11). The mound was found on a natural rise on a terrace and that is currently surrounded by a hardwood and pine forest.

Figure 2: Location of the Curry Site
The Curry site was first documented in 1975 by Crawford Blakeman (1975) and the Mississippi State University field school through a pedestrian survey. At the time, the site was used as a pasture (Palmer 2007). The site was forgotten but relocated in 2004 by Dr. Janet Rafferty where she collected shell tempered sherds,debitage, and daub from the surface. Both archaeologists found minimal artifacts and deemed the site to be small. However, an excavation of the mound and the surrounding location took place in 2005 and found otherwise. The excavation consisted of 19 50x50 cm units, one 1x1 m unit, and 29 shovel tests. The 1x1 m unit and six of the 50x50cm units were situated on the mound, while the others went in all four cardinal directions off the mound.

The site size is 3.3 ha (33,000 m²) and has evidence of burrowing animals, which means they could affect the location of various artifacts by mixing strata. Additionally, there was presence of a recent burning on the mound, electric and cable lines through the project area, and remnants of a former field road (Palmer 2007:55). Overall, the mound and surrounding area was found not to be suitable for agricultural development because the soils are wet and infertile (Brent 1973). Mainly the soils were silt and loams over shale deposits. On the mound, Palmer (2007) determined five zones (Table 2) related to three distinctive periods of use (Figure 3). Zones C and D are split and represented as zones C1, C2, D1, and D2, due to interruptions of basket loading in the zone walls but are still considered of the same zone.

Soil analyses on and off the mound showed that the pH of the soils on the mound were higher (8.2) than off the mound (6.7). A higher pH means that the soil is less
acidic, which means it will help preserve materials better. Thus, we are expected to have better bone and artifact preservation.

Table 2: Soil Types and Zones of the Curry Site

<table>
<thead>
<tr>
<th>Zone</th>
<th>Munsell</th>
<th>Color</th>
<th>Texture</th>
<th>Period of Use</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10YR 4/3</td>
<td>brown</td>
<td>silt loam</td>
<td>3</td>
<td>mainly absent</td>
</tr>
<tr>
<td>B</td>
<td>10YR 4/2</td>
<td>dark grayish brown</td>
<td>silt loam</td>
<td>3</td>
<td>mottled with 10YR 6/2 light brownish gray soil with a sandy texture</td>
</tr>
<tr>
<td>C (C1 and C2)</td>
<td>10YR 3/2</td>
<td>very dark grayish brown</td>
<td>sandy</td>
<td>2</td>
<td>midden zone</td>
</tr>
<tr>
<td>D (D1 and D2)</td>
<td>10YR 5/4</td>
<td>yellowish brown brown yellow</td>
<td>sandy clay</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>10YR 7/6</td>
<td>yellow</td>
<td>clay loam</td>
<td></td>
<td>Subsoil</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subsoil</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subsoil</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subsoil</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subsoil</td>
</tr>
</tbody>
</table>

Source: Palmer, 2007, Table 5

Figure 3: Curry Site Zones (Palmer 2007:68)
Within the mound, eight features were located (Table 3). All features that were confidently labeled as features are included here. Feature numbers not included are numbers one, two, and three because they were found to represent non cultural disturbances. Additionally, in the lab features six and ten were determined to be a continuation of feature four, and features five and seven are periods of basket loading that were identified and excavated separately. The rest of the features indicate a pattern of being found in E and D, but no features continue into zone C. Additionally, most features are contingent on evidence of a structure being built on the mound, which is supported by geophysical survey. The survey showed a structure that was approximately 10x15 m in size (Palmer 2007).

Additional analyses of the zones and features found that the mound was constructed and occupied in three separate episodes. The first episode of building is in zone E, which indicates a lot of basket loading onto a natural rise in the terrace. The second period of use is in zone D, also known as the midden zone. Zone D has most the features of wall trenches and postholes, as well as the top of the pit located on the bottom of the zone. Thus, zone D indicates intense mound building and architectural construction and maintenance of the structure (Palmer 2007:75). The last period of use is in zone C, which has no features associated with it. Palmer (2007:75) argues this is because the domestic use of the mound decreased.

Radiocarbon dates were analyzed from charcoal found in zones C and D (Table 4). Zone C yielded a two-sigma date range from A.D. 1280-1410 and zone D yielded a two-sigma date range of A.D. 1300-1440. Beta Analytic used the Pretoria Calibration Procedure to calibrate the dates. Thus, the radiocarbon dates zone D being occupied at
A.D. 1300, leaving the first occupation taking place before this date, and the third and final period of use afterward (Palmer 2007).

Table 3: List of Features (Palmer 2007)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Unit</th>
<th>Zone</th>
<th>Feature Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0N10E</td>
<td>D</td>
<td>Wall Trench and Two Postholes</td>
</tr>
<tr>
<td>8</td>
<td>0N4E</td>
<td>D</td>
<td>Wall Trench and Two Postholes</td>
</tr>
<tr>
<td>9(9/11a)</td>
<td>0N4E</td>
<td>D</td>
<td>Wall Trench and Two Postholes</td>
</tr>
<tr>
<td>11(9/11a)</td>
<td>0N4E</td>
<td>D</td>
<td>Wall Trench and Two Postholes</td>
</tr>
<tr>
<td>9/11b</td>
<td>0N4E</td>
<td>E</td>
<td>Wall Trench and One Posthole</td>
</tr>
<tr>
<td>12</td>
<td>0N4E</td>
<td>E</td>
<td>Hearth</td>
</tr>
<tr>
<td>13</td>
<td>0N4E</td>
<td>D/E</td>
<td>Pit</td>
</tr>
<tr>
<td>14</td>
<td>0N4E</td>
<td>D</td>
<td>Wall Trench</td>
</tr>
</tbody>
</table>

Source: Palmer, 2007, Table 6

Table 4: Radiocarbon Dates for the Curry Site

<table>
<thead>
<tr>
<th>Unit</th>
<th>Zone</th>
<th>Material</th>
<th>Sample No.</th>
<th>Analysis</th>
<th>Age 13C/12C</th>
<th>Age Cal. RCYBP</th>
<th>Central Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>0N4E</td>
<td>D</td>
<td>Charcoal</td>
<td>22OK578 #157</td>
<td>Radiometric</td>
<td>560 ± 50 B.P.</td>
<td>A.D. 1300-1440</td>
<td>A.D. 1410</td>
</tr>
<tr>
<td>0N4E</td>
<td>C</td>
<td>Charcoal</td>
<td>22OK578 #157</td>
<td>AMS</td>
<td>670 ± 40 B.P.</td>
<td>A.D. 1280-1410</td>
<td>A.D. 1300</td>
</tr>
</tbody>
</table>

Source: Palmer 2007, Table 7

Palmer (2007) suggests that the mound most likely functioned as a single domestic site during the Early Mississippian, and then shifted toward occupation of a hamlet during the Late Mississippian. However, there is a possibility that the mound was used as a vacant center during the final use period due to the lack of features in zone C, the increased presence of ceramics in zone C is associated with specific areas for food
and lithic manufacture. The argument of the mound’s use as a vacant center would be supported by a village site being found nearby. Though no village was discovered during the excavation, there was a shovel test located 140m from the mound with a large concentration of daub recovered. With daub being a common building material, this could be a location for a settlement, but further excavation is needed (Palmer 2007:80).

Recovered Artifacts

During the excavation, daub was found in large amounts equating to over 35 kg. Most was found in unit 0N4E, which was also the only 1X1 m unit. The zones with the highest concentrations in zones E through C, with the subsoils and topsoil having little to no daub. This concentration further supports a structure on the mound.

Ceramics had additional analyses to find temporal patterns. Overall, 648 (86.28%) ceramics were plain shell tempered, which is common during this time period. However, 9.59% of the ceramic assemblage consisted of other tempers \(n=72\) including sand, a mixture of sand and shell, and a mixture of sand and grog. Three rims with complete handles were safely excavated. Only 31 of the ceramic sherds were decorated. Decorations included burnished, incised, punctuated, and engraved. Palmer (2007:83-86) found that the ceramics, using these decorative attributes, were possibly used from A.D. 1260 - 1400 with evidence of similar patterns being associated with pottery from Moundville.
Lithics and lithic debris are also associated with the Curry site. Most flakes produced at the site used Tuscaloosa gravel (n= 199) or Fort Payne chert (n=5). 90 of the Tuscaloosa gravel were heat treated with none of them exhibiting signs of heat damage. Of the lithics, two projectile point types were noted. In addition to the flakes, ten Madison points were found with nine made from Tuscaloosa gravel and one from Fort Payne chert. Of these, five were heat treated.

Other artifacts found during excavation were a shell bead and a stone bead found in zone C and a ceramic shell temper pipe in zone E right above the subsoil and between the pit and wall trench. Palmer (2007:91) suggests that these items are associated as status markers since there are only a few found in the mound. Lastly, shell analyses showed a presence of freshwater snails, land snails, pill clams, and mussel shells (Palmer 2007:90).

Initial faunal analyses record remains from all 50x50cm (0N10E, 10N0E, 10N10E, 0N10W, 10S10W) units on the mound and in the 1x1m unit (0N4E). Identifications were performed by Dr. S. Homes Hogue who found that the most common specimens were deer, turkey, squirrel, rabbit, bird, snake, fish, and turtle. Most of the remains were found in zone C, D, and E. Across the units, most were found on the east side of the mound (Palmer 2007:89).

Palmer suggested that the mound began as a domestic living location and changed in function to a communal area used for feasting. This is because, after the final construction period, the mound has no structures, increased in decorated ceramics, and associated with beads. In addition, there were clear areas for lithic manufacturing and food preparation represented by a midden deposit in the second
period of use (Palmer 2007:75). Palmer hypothesized the deposit was suggestive of a feast and requests further research on the midden. The research presented here aims to understand the faunal refuse to test Palmer’s hypothesis.
To reiterate, current research involving status differentiation in Southeastern faunal assemblages focus on the dichotomy between low status and high status individuals (Jackson and Scott 2003; Kelly 1997; Knight 2004; Michals 1980, 1990). Feasting deposits are also viewed as dichotomous (either being a feast or not a feast). However, some feasting research has tried to separate feasts into subcategories in an attempt to account for the variation depicted in both ethnographic and archaeological based feasting events (Dietler 2001; Hayden 2001). Thus, the dimensions of status and feasting are separated by being viewed as “mutually opposed rather than dialectically related” (Twiss 2007:51). Both dichotomies may be helpful in extreme cases, but they fail to differentiate assemblages that lie in the middle, such as those that have both low and high-status qualities. To put it simply, reliance on these dichotomies in understanding Mississippian Period subsistence “has led to a stagnation of intellectual achievement” (Nolan and Cook 2011:297). Therefore, I apply Dunnell’s (1971) systematics using the dimensions of status and feasting as a tool to change the scale of measurement from a binary one to a continuous one. This shift in measurement scale will benefit the faunal analyses of feasting and social status in Mississippian societies.

Description and Definition
Before diving into what classification is, Dunnell (1971:17) differentiates between description and definition. A description is a list, or “a compilation of the variable attributes of an individual case or group of cases”. This is how the current dichotomies are structured with each extreme having a list of most common traits associated with it. A definition, meant to be dichotomous from descriptions “is a statement of the meaning or significance of a word”, which is separated further into extensional and intensional definitions (Dunnell 1971:15-17). Definitions that are extensional are similar to descriptions by listing “all the objects to which the term is applicable” and only have a practical use if the term has specified boundaries (Dunnell 1971:15). For example, for the term feast, archaeologists must create a list involving all objects that are recognized as a feast through time and space. The downside to this, is that the actual term “feast” cannot be conveyed as its own definition, but instead is defined by the list of objects related to the term. Therefore, extensional definitions are limiting to being defined by what is already known, which means that “something is something because it is, and nothing more” (Dunnell 1971:15). In addition to extensional definitions being limiting, they are also subjective since they are based off what one individual stated the definition is (Hart and Brumbach 2003). A great example of this is in Hayden’s (2001) list of feasting traits. The extensional definition, with continued research accounting for additional assemblages, changes when new phenomena is identified. Therefore, the extensional definition of feasting today, is much different than what it was yesterday. Unfortunately, this means what “is published is a summary description of attributes…of particular assemblages thought to be sufficiently similar” to what archaeologists believe
constitutes a feast based on their own ideas (Nolan and Cook 2011:303, emphasis on original).

On the other hand, intensional definitions “specify a set of features which objects, whether known or unknown, must display in order to be considered referents for a given term” or “the necessary and sufficient conditions for membership in a unit” (Dunnell 1971:16-17). Simply put, intensional definitions only list the things that are used to explicitly identify a given term. These definitions make it easy to ascribe membership to a unit, so that when new information is present the intensional definition can determine if it does or does not belong to the unit. What is powerful about intensional definitions that extensional definitions lack, is that intensional definitions are suited to convey more information that just telling a reader what he already knows by allowing the things in a class to vary (Dunnell 1971:17). In total, descriptions are meant to supplement definitions by listing attributes of the term being defined that are not shared by that term. A simple example is with “bone”. A small calcined bone specifies that the bone is small and calcined, but “bone” is defined by separate attributes that all bones have in common. For these reasons, an intensional definition is suited better for intellectual advancement, which allows descriptive variations to thrive and not be reduced to noise within the given definitional boundaries. Overall, the use of intensional definitions “imposes order on the data and defines the relationships between variables” (Nolan and Cook 2011:310).

Ideational and Phenomenological Units
Dunnell defines classification as “the creation of units of meaning by means of stipulating redundancies” (1971:44). In other words, classifications are used to create classes and units that are the measurement tools used for the discipline (Ramenofsky and Steffan 1998:8). However, before these units can be determined, archaeologists must understand the difference between the ideational and phenomenological realms. The ideational realm has “no objective existence”, or better known as the realm of ideas. The phenomenological realm is what archaeologists can observe (Dunnell 1971:26). By separating these phenomena from ideas, archaeologists can “separate the means of explanation from the explanation itself” (Dunnell 1971:27). What this means for status and feasting, is that the measures used to determine these extremes are now separated from the explanations of what these measures explain. Inherently, the ideational realm and the phenomenological realm are connected because archaeologists deal with categories of phenomena, which are ideational. Thus, classifications are ideational. With classifications being ideational, grouping is defined as “the creation of units of things”, or groups that are used to “denote arrangement in the phenomenological realm” (Dunnell 1971:44). Since the ideational realm and phenomenological realm are linked and classes cannot inherently be observed, identification works to use “classes to assign phenomena to groups” (Dunnell 1971:44), or more simply to sort objects into classes. Lastly, classes have intensional definitions (one per class) whereas groups are amenable to description that are specific in time and space and the descriptions must also be defined. In other words, a class cannot be described, but you can describe the class’s relationship to other classes.
Modes and Dimensions

Classes are composed of modes and dimensions. Modes are classes, but “at the scale of the attribute” and defined “as a cultural paradigmatic class of attribute of discrete objects” (Dunnell 1971:155). In short, modes are classes, thus they require an explicit definition, but they are also used to classify objects into types, which represent a higher scale than class (Dunnell 1971:Figure 15; Nolan and Cook 2011:10). A dimension is “a set of mutually exclusive alternative features” (Dunnell 1971:71). Dimensions relate to modes because dimensions are “composed of explicitly defined modes used in constructing classes at the scale whole objects [that] must be related to the question in the relevant theory (Nolan and Cook 2011:302).

Taxonomic and Paradigmatic Classifications

The different scales of classification are related to two types of classification techniques: taxonomic and paradigmatic classifications. Taxonomic classifications are “non-equivalent, structured, weighted and thus inferentially associated features of objects”. Taxonomic classifications also require additional assumptions before use (Dunnell 1971:70-76). For example, A white-tail deer is a member of the Cervidae Family, but to be a member to Cervidae, the deer is assumed to fit the group membership of Artiodactyl. Paradigmatic classifications use “class definitions that are drawn from dimensions of features” (Dunnell 1971:71). These features are “equivalent,
unstructured, unweighted, and thus directly associated in analogous attributes of objects” (Dunnell 1971: 70). The features are also mutually exclusive and are related to other attributes that belong to the same or different dimensions, which create comparable quantifiable units useful for measurement (Dunnell 1971). Furthermore, classes in paradigmatic classifications are produced by the intersection of features and the dimensions that represent the features (Dunnell 1971: Figure 4). Therefore, paradigmatic classifications are the most parsimonious and do not require additional assumptions before use, which makes them more useful for discussing and categorizing material types such as lithics, ceramics, and faunal assemblages (Dunnell 1971: 76).

Current Issues in Feasting and Status Research

Returning to feasting and status, current research limits the amount of variation by using extensional definitions of lists to decide what is and is not a feast and what is low status eating versus what is and is not high-status eating. Feasting and status research based on faunal assemblages and other material types (e.g., ceramics and prestige items), do not do anything to actually define status and feasting in these assemblages, which makes analyzing them subjective when determining what assemblages are feasting and/or status related. Feasting goes a step further, by following some sort of taxonomic classification scheme with sub categories that require additional assumptions and structure for group membership (Hayden 2001: Figure 2.1). On another note, the measures for feasting and status do have connections to the ideological realm with definitions, but the objective phenomenological details vary,
meaning there is no difference between the measurements of anything and the measurements of anything else (Kevin Nolan, personal communication 2020). To simplify, “feasting” and “status” have definitions, but there are no definitions on the assemblage level (phenomena), which causes each researcher to make their own boundaries for the definitions. These self-made boundaries are usually then created before the analysis to say what they wanted to say before the analysis begins. Therefore, nothing is really learned nor comparable. For example, how can a faunal assemblage be plainly labeled as a high-status domestic eating assemblage when there is evidence that is not considered “high status” within the same assemblage? The same goes for feasting. If feasting has a lot of the same qualities as a high-status assemblage, how can we write off the variation as noise and how it is not a variation of high status domestic eating instead? The dimensions of status and feasting are begging for a pragmatic classification scheme to allow this variation to have a voice and show uniqueness between extremes and change the scale of the variability. Additionally, implementing a pragmatic classification with allow all assemblages to be comparable. The concepts of feasting and status, therefore, must operate along the same continuous principles with quantity along various precision scales dictated by the purpose of use (Kevin Nolan, personal communication 2020). I attempt to do just this, with feasting and status as continuous dimensions, with infinite grading modes depending on the measurement scale, that move relatively along my feasting and status dimensions. My measures of variability are also dimensions that are directly measurable and related to my higher level feasting and status dimensions. I will then translate my measures of
variability as the dimensions of variability by quantifying the results of my faunal assemblages.
METHODS

For my research I examined the faunal assemblage from the midden deposit on the Curry Site mound. All faunal specimens are included except the mussel shells, which were previously identified (Palmer 2007). Standard zooarchaeological methods outlined in Reitz and Wing (2008) will be used. For faunal identification, I used the comparative collections in the Ball State University's zooarchaeological collection, and the zooarchaeological collection located at Indiana University. Additional resources used to assist in identifications were Gilbert (1990), and Olsen (1964, 1968, 1972). Identifications were categorized conservatively on the species, genus, family, and group levels when appropriate. Unidentifiable specimens were placed in categories based on class placement with mammals having additional categories based on size. These include large UID, large-medium UID, medium UID, medium-small UID, small UID, and UID mammal. These categories were used when the size of miscellaneous fragments and curvature of shaft fragments were ideal signatures representing the size of the mammal it came from. These categories were also used conservatively, thus if any specimens were too small or unidentifiable to element, they were placed in the UID mammal category. Additional data collected for all specimens includes counts, weights, and portions (on a percentage scale of 0%-100%). Other information included was siding (left and right), visible bone surface modifications (e.g. burning, cutmarks, erosion), and portion available of identifiable elements (proximal, distal, shaft).
To analyze the assemblage based on the data collected I included calculations of the Number of Individual Specimens (NISP), Minimum Number of Elements (MNE), and Minimum Number of Individuals (MNI) (Reitz and Wing 2008). These calculations assisted in organizing my data, making analyzing my assemblage much easier. The most basic way to organize data is using NISP counts. NISP provided an overall count of the assemblage by taxonomic category. Here, each bone fragment is considered their own specimen, thus NISP represents the total number fragments associated with the assemblage of each classification category. NISP is the most basic unit of quantification in zooarchaeological analyses that does not need manipulation to be a meaningful measurement (Peres 2010:26).

MNE is a derivative of NISP into more meaningful parts. Here, MNE separates the NISP identification categories into elemental identifications of the assemblage. This means categories based on species will be separated based on what elements are in the assemblage along with what side they belong to when possible. Additionally, this categorization makes other analyses used easier to organize and understand.

MNI is also a derivative of NISP to show how many individuals are represented in the assemblage. MNI is the measure of the smallest quantity in a zooarchaeological assemblage of each taxonomic category. MNI only consists of specimens that were identifiable with evidence of age, sex, size, and context taken into consideration (Reitz and Wing 2008). For instance, if three left deer humeri were found, then the MNI is 3 because deer only have one left humerus. I used this measure to figure out which taxa were overrepresented in the assemblage, and which are in minor amounts. Both MNE and MNI will be useful in understanding the presence of different species.
There are two different methods to calculate MNI for faunal assemblages. They are called the maximum distinction method and the minimum distinction method. The maximum distinction method groups faunal remains by arbitrary levels created by the archaeologist or by stratigraphy, whereas the minimum distinction method groups the remains for the entire site (Grayson 1973). The maximum distinction first separates the assemblage on stratigraphic breaks in the soil, and then analyzed by the artificial levels to have the maximum amount of MNI of the assemblage. This is different than the minimum distinction method that conservatively aggregates all remains together regardless of stratigraphic and artificial levels (Grayson 1973). For this research I calculated MNI based on the maximum distinction method by separating the assemblage based on the stratigraphy identified and between the use periods of the assemblage. This way, I can see how the zones differ and how the use periods differed since the function of the mound changed. However, issues may arise using this method with small sample sizes. Grayson (1978) stated that the maximum distinction method will exaggerating the MNI of each assemblage when the sample size for each species is small.

In conclusion, all three of these measures serve as an important base for all zooarchaeological research, but they have various degrees of usefulness. NISP is the most basic unit allowing general categorization of specimens indicating the total specimen counts for the assemblage. MNE serves as organizational technique to see what kinds of elements were found in the assemblage. Lastly, MNI will not be further manipulated, but will show how many individuals are in each zone and in each of the
three use periods on mound. Overall, NISP, MNE, and MNI will all be analyzed separately, but also be used in measures of dimensional variability discussed below.

Measures of Variability

I analyzed multiple measures along economic status and feasting dimensions using NISP, MNE, and MNI by measuring elemental representations of deer, deer butchering, exotic species, bone fragmentation, and seasonality. Each measure has a defined relationship to economic status and feasting dimensions that are discussed further in the next section. To measure for deer representations, I analyzed MNE values more closely and followed Kelly’s (1997) Deer Utility Index (Figure 4). By separating elements into the three categories of low, mid, and high utility elements. Low utility elements include metapodial, phalanges, metacarpals, and the skull, mid utility includes the vertebrae, forequarter (radius, humerus, ulna, scapula), pelvis, and ribs, and high utility elements only include the hindquarter (femur, tibia, patella). Once separated, I used NISP percentages to compare the assemblages. Additional calculations of log differences of the Curry site assemblages were created with standard deer element representations based on Reitz and Wing (2008:223). Values near zero mean that the archaeological assemblage is more similar to the standard deer, negative values indicate that the utility is underrepresented, and positive values indicate overrepresentation. Previously, the Deer Utility Index was used for analyzing fauna in Moundville (Michals 1990; Jackson and Scott 2003) and Cahokia (Kelly 1997; Kelly 2001). This index is used to mainly analyze differences of economic status. If people of
higher status are being provisioned, then they are more likely to have higher representations of hindquarters and forequarters in their assemblages than those of lower status. On the other hand, those of lower status are more likely to have an even spread of each deer element category, but Kelly (1997) found that they could also have higher representation of mid utility elements. Feasting deposits mimic deer utility of high economic status by having an assemblage with increased representations of high utility elements.

![Figure 4: Deer Utility Indices (copied from Kelly 1997:71)](image)

Evidence of on site or off-site butchering is also visible through utility representations. However, these portions will be separated into additional portions mimicking Hogue and McCain (2006) and Hogue and Rafferty (2006) based on Reitz and Wing (2008): the skull (cranium, mandible, teeth, antler), axial (vertebrae, sternum, sacrum, ribs), forequarter (scapula, humerus, radius, ulna), hindquarter (innominate,
femur, tibia, fibula, patella), and lower legs and feet (metacarpals, metatarsals, carpals, tarsals, and phalanges). Usually, deer are more likely to be butchered elsewhere to make transportation easier due to their size. These portions will also be calculated into log difference scales. In relation to the skeletal portions, the assemblage would have overrepresentations of lower legs and feet if the deer was butchered on site and under-representations of these elements if butchered elsewhere. Low status individuals are more likely to butcher their deer on site, and higher status individuals are more likely to have their deer butchered off site. Feasting also mimics high status deposits here with more evidence of off-site butchering.

Rare/exotic species representations also have different relationships in economic status and feasting. The presences of rare and exotic species refer to animals that are not typical in the diet. Meaning, those that are rare/exotic, dangerous, or inedible. These types of animals are seen as symbolic, holding a specific place in Mississippian ideologies of both domestic eating and feasting. These species are visible in NISP categorization, and MNI values with special attention given towards animals that are not typical in the diet such as raptors, small birds, cougars, bears, and bobcats (Jackson and Scott 1995). If these types of taxa are present in a larger frequency, then researchers argue the site was occupied by high status individuals or depicts a ritual feasting event. If there is a low frequency or absence of these taxa, then the assemblage would signify the site was occupied by those with lower status.

Bone processing, or fragmentation, is represented by an average weight of fragmented elements of different taxa, in this case deer, within the assemblage. All specimens entered four categories of either >25%, 25-50%, 50-75%, or >75% available
(Hogue and McCain 2006; Hogue and Rafferty 2006) indicating the level of completeness. Then, modeling after Zeder and Arter’s (1996) methodology, the weight of deer bone fragments is divided by the total NISP. To do this, the specimens were separated into the same six categories discussed in the butchery measure. The higher the average weight of each category, the less the bones are fragmented and vice versa. Low status individuals are more likely to fragment their deer for marrow consumption, but high-status individuals are less likely to fragment their deer.

Lastly, seasonality measures the temporal nature of the assemblage by analyzing tooth eruption in deer mandibles, or in male skulls distinguished by shed or attached antlers (Severinghaus 1949). Fawns are born between May and June, with specific age determinations on tooth eruptions up to two years of life. With that, I determined what season the deer were killed. After two years, age determinates are separated into six-month categories. Thus, if the assemblage represents deer aged one or two years, then the assemblage was created in the late spring, but if the assemblage is represented by half years, then it is a fall assemblage. Antlers begin growth in May, are completed by September, and shed in January (Zeder and Arter 1996). Therefore, if the Curry assemblage contains deer skulls without antlers attached, then the animal was killed between January and May. For the assemblage to be on one event, it is most likely the remains will be around the same time, whereas mixed seasons will depict domestic use. This measure is mostly for indicating a feasting event versus domestic eating. This is because domestic eating should indicate multiple seasons of use regardless of it being elite or commoner subsistence and feasting events usually depict a single season because it is one event.
To sum up, I used NISP, MNE, and MNI to organize my data collected on each specimen within the assemblage. From there, I analyzed the data collected to measure along the two dimensions of variability between status and social eating. This included measures of deer utility, butchering, presence of rare/exotic species, bone processing of deer, and seasonality. By placing each measure on a continuum, I want to highlight the amount of variation that is ignored in current practice of status and feasting research.

Dimensions of Variability

NISP, MNE, and MNI are all important in understanding zooarchaeological assemblages because of their ability to categorize information that is informative of economic and social differences. NISP relates to rare/exotic species, which allowed me to understand how rich the assemblage is in taxa, but also the amount of taxa that are not typically found in the diet. MNE values for species shows what elements are represented for the Deer Utility Index, butchery, and fragmentation calculations. Lastly, MNI simply shows how many individuals of each species are represented.

Currently, the focus in understanding Mississippian Period faunal assemblages works to dichotomize them based on socioeconomic status. For my analysis, all of the measures vary along the continua of economic status and feasting. On the economic continuum, status is understood as people having low status on one end, and high-status on the other end. Removing the dichotomous framework for faunal assemblages allows more variation to exist not as noise, but as interesting data showing finer details.
of assemblages otherwise ignored. Therefore, I am no longer using “elite” and "commoner" terminology.

If assemblages cannot be explained by status, then zooarchaeologists look towards the possibilities of feasting activity using function-based subclasses to separate feasting and domestic activities. However, these feasts are rarely understood as having a low status or high-status relations. Instead of following in the footsteps of previous research, I see economic status and feasting as continua of variability that are not meant to be separated nor classified based on taxonomic classification principles. Looking at diet and feasting this way, I can use these dimensions not as discrete variables depicting the extreme cases, but as ones that focus on the amount of variability within and between assemblages. The goal of these dimensions of variability is to set up a method that can be replicable across multiple assemblages that work together not just to understand faunal assemblages, but to also highlight the amount of variability within and between them. Thus, this framework allows zooarchaeological research of diet and feasting to move away from discrete binary categories and instead use multiple measures all concerned with measuring variability.

To reiterate, there are two dimensions of variability that I analyzed as continua: status and feasting. The dimension of status looks at differences depicted through high status and low status domestic eating habits. The other dimension looks at feasting and domestic eating habits. Table 5 shows how I decided to use these because feasting is often defined as being consciously differentiated from domestic eating regardless of the status of those holding the feast (Hayden 2001; Russell 2012). High status and low status patterns hold opposite sides of the continuum since high status faunal patterns
are distinguishable from those of lower status due to differences in lifestyle and power, but they can share similarities. The same goes with feasting and domestic eating. They lie on the other axis, which creates a framework where feasting, domestic eating, and status all vary within and between one another.

Table 5: Relationships between Measures of Variability and the Dimensions of Status and Feasting

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic status → High Status</td>
<td>• Deer Utility: more hindlimbs and forelimbs because of provisioning</td>
</tr>
<tr>
<td></td>
<td>• Butchering: more likely off-site</td>
</tr>
<tr>
<td></td>
<td>• Exotic Species: More likely to have a lot of rare and dangerous taxa and</td>
</tr>
<tr>
<td></td>
<td>birds, mainly those not typical in the diet</td>
</tr>
<tr>
<td></td>
<td>• Fragmentation: less likely</td>
</tr>
<tr>
<td></td>
<td>• Seasonality: more than one season</td>
</tr>
<tr>
<td>Economic Status → Low Status</td>
<td>• Deer Utility: more mid and less high utility elements</td>
</tr>
<tr>
<td></td>
<td>• Butchering: more likely on site</td>
</tr>
<tr>
<td></td>
<td>• Exotic Species: less likely to have many</td>
</tr>
<tr>
<td></td>
<td>• Fragmentation: more likely</td>
</tr>
<tr>
<td></td>
<td>• Seasonality: more than one season</td>
</tr>
<tr>
<td>Domestic Eating (Regular)</td>
<td>• Deer Utility: more high utility</td>
</tr>
<tr>
<td></td>
<td>• Butchering: more likely off site</td>
</tr>
<tr>
<td></td>
<td>• Exotic Species: more likely to have many</td>
</tr>
<tr>
<td></td>
<td>• Fragmentation: more likely</td>
</tr>
<tr>
<td></td>
<td>• Seasonality: multiple seasons in a deposit</td>
</tr>
<tr>
<td>Non-domestic Eating (Feasting)</td>
<td>• Deer Utility: more even utility counts on average</td>
</tr>
<tr>
<td></td>
<td>• Butchering: more likely on site</td>
</tr>
<tr>
<td></td>
<td>• Exotic Species: less likely to have many</td>
</tr>
<tr>
<td></td>
<td>• Fragmentation: less likely</td>
</tr>
<tr>
<td></td>
<td>• Seasonality: one deposit covering one event over one season</td>
</tr>
</tbody>
</table>
For each measure, there is a status and feasting dimension relation. The measures are also dimensions at a different scale that refer to the context of what is observed. For this study, there are three different periods of mound usage that are measured separately. Period one, the earliest period of occupation, is contained in zone E. Period two are zones D1 to D2, and period three contains zone C. Features associated with these zones included in my analyses are features 7, 9, 9C, 12A, and 13. All features are in one of the zones except for feature 13. Feature 13 was originally placed in the D and E transition, but with the pit feature starting at the bottom of zone D2 and the top of zone E, the feature will be placed in zone D2 for analysis in the second period of occupation. Other features such as features 2 and 3 were also found to have faunal remains but turned out not to be features, thus they are confined to the zone associated with them. With the assemblage separated into the periods of use, I can test Palmer’s (2007) hypothesis that the mound changed function between zone D and C.

For the high-level dimensions (status and feasting), a composite score based on the results of each measure will be calculated depending on how the measures score on a scale from -3 to 3 for each period of use (Table 6 and Table 7). This will create a single X value (status) and a single Y value (social eating) along the continua as one composite scatter plot. Doing this will make it easier to compare the zones and decide whether there are similarities and/or differences between all four zones. With hypothetical composite scores for all four periods of use (Table 8), the two-dimensional paradigm would look like Figure 5. Hypothetical Case #1 (HC1) indicates an assemblage that is more likely associated with high status feasting whereas HC2 is
indicative of high-status eating and in the middle of domestic eating and feasting activities. What this means, is that assemblages no longer must be related to either status or feasting but can now vary between and within the dimensions. HC3 shows the assemblage resembling feasting activities, but the status of that feast is in the middle of lower status and higher status consumption. Finally, HC4 shows the assemblage is indicative of low status domestic eating but has a score closer to the high status portion of the continuum. This means that the assemblage is more likely to be of low status, but it may have high status qualities.
Table 6: Status Dimension Scoring System

<table>
<thead>
<tr>
<th>Status</th>
<th>Very Low</th>
<th>Low</th>
<th>Mod. Low</th>
<th>Mixed</th>
<th>Mod. High</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility</td>
<td>Very Low</td>
<td>Mod. Low</td>
<td>Low</td>
<td>Normal</td>
<td>Mod. High</td>
<td>High</td>
<td>Very High</td>
</tr>
<tr>
<td>Butchering</td>
<td>Frequent</td>
<td>High</td>
<td>High</td>
<td>Present</td>
<td>Mod. High</td>
<td>High</td>
<td>Absent</td>
</tr>
<tr>
<td>Exotic/Rare</td>
<td>Absent</td>
<td>Low</td>
<td>Mod. Low</td>
<td>Few</td>
<td>Mod. High</td>
<td>High</td>
<td>Abundant</td>
</tr>
<tr>
<td>Fragmentation</td>
<td>Highly</td>
<td>High</td>
<td>Mod. High</td>
<td>Moderate</td>
<td>Moderately</td>
<td>Low</td>
<td>None</td>
</tr>
<tr>
<td>Seasonality</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Multiple</td>
<td>N/A</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Multiple</td>
</tr>
<tr>
<td>Score</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 7: Social Eating Dimension Scoring System

<table>
<thead>
<tr>
<th>Eating</th>
<th>Very Domestic</th>
<th>Domestic</th>
<th>Mod. Domestic</th>
<th>Mixed</th>
<th>Mod. Communal</th>
<th>Communal</th>
<th>Very Communal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility</td>
<td>Very Low</td>
<td>Mod. Low</td>
<td>Low</td>
<td>Normal</td>
<td>Mod. High</td>
<td>High</td>
<td>Very High</td>
</tr>
<tr>
<td>Butchering</td>
<td>Frequent</td>
<td>High</td>
<td>High</td>
<td>Moderate</td>
<td>Mod. Low</td>
<td>High</td>
<td>Absent</td>
</tr>
<tr>
<td>Exotic/Rare</td>
<td>None</td>
<td>Low</td>
<td>Mod. Low</td>
<td>Few</td>
<td>Mod. High</td>
<td>Many</td>
<td>Abundant</td>
</tr>
<tr>
<td>Fragmentation</td>
<td>Very Low</td>
<td>Low</td>
<td>Mod. Low</td>
<td>Moderate</td>
<td>Mod. High</td>
<td>High</td>
<td>Very High</td>
</tr>
<tr>
<td>Seasonality</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Multiple</td>
<td>N/A</td>
<td>Season</td>
<td>One</td>
<td>One</td>
</tr>
<tr>
<td>Score</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 8: Hypothetical Composite Scores for the Periods of Use

<table>
<thead>
<tr>
<th>Period of Use (Zone)</th>
<th>Status Composite Score</th>
<th>Feasting Composite Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC1</td>
<td>-7</td>
<td>3</td>
</tr>
<tr>
<td>HC2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>HC3</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>HC4</td>
<td>-1</td>
<td>-8</td>
</tr>
</tbody>
</table>

Figure 5: Hypothetical Status and Feasting Dimensions of Faunal Assemblage Variability

Currently, no one has viewed zooarchaeological assemblages in this manner, which makes the actual usage of this figure difficult. Thus, it is used as a structured relative scale of variability. Once the dimensions of variability are applied to other assemblages, this graph will have applicable measures on the least and most spectrum to make all assemblages comparable and possibly find more useful patterns between different sites. By quantifying my assemblages in this manner, I hope to show how zooarchaeologists can benefit from similar practices used to understand social status.
and feasting in Mississippian societies. Ultimately, the goal is to kick start zooarchaeological methodology that focus on fine-scale variability to make results not only more interesting, but more accurate and comparable.
RESULTS

A total of 4,567 animal remains were analyzed for this site investigation. Of those, 85 remains were removed from the investigation due to being surface finds and/or not having associated zonal provenience. Of these, only one specimen was identified as an owl and the rest were unidentified mammal, bird, and turtle. Another set of remains were removed due to being in zones above B and below E that were not dated. Remains below E could be from the Mississippian Period, but they could also be from any period before that. In the end, the faunal assemblage contained a total of 3,727 specimens with 2,304 identified to Class, one identified to Order, 191 identified to Family, six identified to Genus, and 162 to Species. In total, the site contained an MNI of 40. The MNI total was calculated by each period of use and then summed. The NISP and MNI results for the Curry site are depicted in Table 9.
Table 9: Total NISP and MNI for the Curry Site

<table>
<thead>
<tr>
<th>Taxonomic Class</th>
<th>Taxon</th>
<th>Common Name</th>
<th>NISP</th>
<th>MNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibians</td>
<td>Herptiles</td>
<td>UID Amphibian/Reptile</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caudata</td>
<td>UID Salamander</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Birds</td>
<td>Bonasa umbellus</td>
<td>Ruffed Grouse</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Falco peregrinus</td>
<td>Peregrine Falcon</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cygnus buccinator or</td>
<td>Trumpeter Swan or Tundra</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cygnus columbianus</td>
<td>Swan</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Meleagris gallopavo</td>
<td>Turkey</td>
<td>39</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Aves</td>
<td>UID Bird</td>
<td>787</td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td>Ictalurus punctatus</td>
<td>Channel Catfish</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Lepisosteidae</td>
<td>UID Gar</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Acipenseridae</td>
<td>UID Sturgeon</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Osteichthyes</td>
<td>UID Fish</td>
<td>32</td>
<td>3</td>
</tr>
<tr>
<td>Mammals</td>
<td>Sylvilagus floridana</td>
<td>Eastern Cottontail</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Scalopus aquaticus</td>
<td>Eastern Mole</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sciurus carolinensis</td>
<td>Grey Squirrel</td>
<td>23</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mammalia</td>
<td>Large UID Mammal</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mammalia</td>
<td>Large-Medium UID Mammal</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mammalia</td>
<td>Medium UID Mammal</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mammalia</td>
<td>Medium-Small UID Mammal</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Didelphis virginiana</td>
<td>Opossum</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Procyon lotor</td>
<td>Raccoon</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mammalia</td>
<td>Small UID Mammal</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mammalia</td>
<td>UID Mammal</td>
<td>1122</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rodentia</td>
<td>UID Rodent</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Odocoileus virginianus</td>
<td>White-tailed deer</td>
<td>70</td>
<td>4</td>
</tr>
<tr>
<td>Reptiles</td>
<td>Emydidae</td>
<td>UID Box/Water Turtle</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Apalone spp.</td>
<td>UID Softshell Turtle</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Serpentes</td>
<td>UID Snake</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Testudinidata</td>
<td>UID Turtle</td>
<td>174</td>
<td>1</td>
</tr>
<tr>
<td>Vertebrates</td>
<td>Vertebrata</td>
<td>UID Vertebrate</td>
<td>1063</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>3727</td>
<td>40</td>
</tr>
</tbody>
</table>
Each of the zones were separated into their periods of use. Zone E is the first period of use, followed by zone D and zone C. Due to the location of the remains, some were attributed to be in a transitional zone between zones C and D. Therefore, a fourth period of use known as the transitional period is also examined here. In zone E the total number of specimens is 596 with only 32 of them having MNI results. NISP, MNI and weights for the assemblage are detailed in Table 10. Most of the assemblage was unidentifiable due to massive fragmentation and burning. Burning was exhibited on 13.42% of the remains in zone E. Zone D (Table 11) has the largest portion of the remains consisting of 1,681 specimens and 92 specimens were identifiable with MNI results. Additionally, approximately 40% of the assemblage is completely calcined. The transitional period equated to only 2 faunal recovery bags accounting for 108 specimens, 25 of which have MNI results (Table 12). Over 50% of the transitional remains exhibited burning with the most being completely calcined. Remains from the final period of use in zone C has an NISP of 1,342 remains with 65 being identifiable with MNI results (Table 13).

The most common bone modification was burning and followed by cutmarks. Burning was evident on 59.69% of the remains from being partially burning to completely calcined. Again, most of the thermally altered remains were completely calcined (30.33%). To compare further, Table 14 shows how class identifications compare to one another in each zone. Mammals are found to dominate each assemblage and is followed by bird and reptiles. Cutmarks were noted on two remains.
One on a fragmented turtle carapace and the other on a white-tail deer pelvis near the acetabulum. There were also three bone tools found in zone with two being made from antler (Figure 6 and Figure 7). Overall, the assemblages were dominated by highly fragmented bone and burned bone. Because of these factors, most of the specimens were unidentifiable and limited the scope of these results.
Table 10: NISP and MNI for Zone E

<table>
<thead>
<tr>
<th>Taxonomic Class</th>
<th>Common Name</th>
<th>NISP</th>
<th>NISP %</th>
<th>MNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birds</td>
<td>Ruffed Grouse</td>
<td>1</td>
<td>0.17%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Turkey</td>
<td>8</td>
<td>1.34%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>UID Bird</td>
<td>164</td>
<td>27.52%</td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td>UID Fish</td>
<td>1</td>
<td>0.17%</td>
<td>1</td>
</tr>
<tr>
<td>Mammals</td>
<td>Eastern Cottontail</td>
<td>2</td>
<td>0.34%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Grey Squirrel</td>
<td>1</td>
<td>0.17%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Large UID Mammal</td>
<td>32</td>
<td>5.37%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large-Medium UID Mammal</td>
<td>15</td>
<td>2.52%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium UID Mammal</td>
<td>2</td>
<td>0.34%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium-Small UID Mammal</td>
<td>1</td>
<td>0.17%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opossum</td>
<td>1</td>
<td>0.17%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Small UID Mammal</td>
<td>7</td>
<td>1.17%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UID Mammal</td>
<td>166</td>
<td>27.85%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UID Rodent</td>
<td>2</td>
<td>0.34%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>White-tailed deer</td>
<td>9</td>
<td>1.51%</td>
<td>1</td>
</tr>
<tr>
<td>Reptiles</td>
<td>UID Snake</td>
<td>4</td>
<td>0.67%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>UID Softshell Turtle</td>
<td>3</td>
<td>0.50%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>UID Turtle</td>
<td>27</td>
<td>4.53%</td>
<td></td>
</tr>
<tr>
<td>Vertebrates</td>
<td>UID Vertebrate</td>
<td>150</td>
<td>25.17%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>596</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>
Table 11: NISP and MNI for Zone D

<table>
<thead>
<tr>
<th>Taxonomic Class</th>
<th>Common Name</th>
<th>NISP</th>
<th>NISP %</th>
<th>MNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibians</td>
<td>UID Salamander</td>
<td>1</td>
<td>0.06%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>UID Amphibian/Reptile</td>
<td>3</td>
<td>0.18%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trumpeter or Tundra Swan</td>
<td>5</td>
<td>0.30%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Turkey</td>
<td>20</td>
<td>1.19%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>UID Bird</td>
<td>377</td>
<td>22.43%</td>
<td></td>
</tr>
<tr>
<td>Birds</td>
<td>Channel Catfish</td>
<td>1</td>
<td>0.06%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>UID Gar</td>
<td>1</td>
<td>0.06%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>UID Sturgeon</td>
<td>2</td>
<td>0.12%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>UID Fish</td>
<td>17</td>
<td>1.01%</td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td>UID Gar</td>
<td>1</td>
<td>0.06%</td>
<td>1</td>
</tr>
<tr>
<td>Mammals</td>
<td>Eastern Cottontail</td>
<td>3</td>
<td>0.18%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Grey Squirrel</td>
<td>20</td>
<td>1.19%</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Large UID Mammal</td>
<td>44</td>
<td>2.62%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large-Medium UID Mammal</td>
<td>50</td>
<td>2.97%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium UID Mammal</td>
<td>9</td>
<td>0.54%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium-Small UID Mammal</td>
<td>6</td>
<td>0.36%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raccoon</td>
<td>4</td>
<td>0.24%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Small UID Mammal</td>
<td>27</td>
<td>1.61%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UID Mammal</td>
<td>526</td>
<td>31.29%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UID Rodent</td>
<td>3</td>
<td>0.18%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>White-tailed deer</td>
<td>26</td>
<td>1.55%</td>
<td>1</td>
</tr>
<tr>
<td>Reptiles</td>
<td>UID Box/Water Turtle</td>
<td>2</td>
<td>0.12%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>UID Snake</td>
<td>2</td>
<td>0.12%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>UID Softshell</td>
<td>2</td>
<td>0.12%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>UID Turtle</td>
<td>67</td>
<td>3.99%</td>
<td></td>
</tr>
<tr>
<td>Vertebrates</td>
<td>UID Vertebrate</td>
<td>463</td>
<td>27.54%</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1681</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>
Table 12: NISP and MNI of the Transitional Zone

<table>
<thead>
<tr>
<th>Taxonomic Class</th>
<th>Common Name</th>
<th>NISP</th>
<th>NISP %</th>
<th>MNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birds</td>
<td>Peregrine Falcon</td>
<td>1</td>
<td>0.93%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>UID Bird</td>
<td>24</td>
<td>22.22%</td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td>UID Fish</td>
<td>8</td>
<td>7.41%</td>
<td>1</td>
</tr>
<tr>
<td>Mammals</td>
<td>Grey Squirrel</td>
<td>1</td>
<td>0.93%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Large UID Mammal</td>
<td>2</td>
<td>1.85%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large-Medium UID Mammal</td>
<td>5</td>
<td>4.63%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small UID Mammal</td>
<td>2</td>
<td>1.85%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UID Mammal</td>
<td>28</td>
<td>25.93%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>White-tailed deer</td>
<td>2</td>
<td>1.85%</td>
<td>1</td>
</tr>
<tr>
<td>Reptiles</td>
<td>UID Turtle</td>
<td>13</td>
<td>12.04%</td>
<td>1</td>
</tr>
<tr>
<td>Vertebrates</td>
<td>UID Vertebrate</td>
<td>22</td>
<td>20.37%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>108</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Table 13: NISP and MNI Results from Zone C

<table>
<thead>
<tr>
<th>Taxonomic Class</th>
<th>Common Name</th>
<th>NISP</th>
<th>NISP %</th>
<th>MNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birds</td>
<td>Turkey</td>
<td>11</td>
<td>0.82%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>UID Bird</td>
<td>222</td>
<td>16.54%</td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td>UID Fish</td>
<td>6</td>
<td>0.45%</td>
<td>1</td>
</tr>
<tr>
<td>Mammals</td>
<td>Eastern Cottontail</td>
<td>3</td>
<td>0.22%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Eastern Mole</td>
<td>8</td>
<td>0.60%</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Grey Squirrel</td>
<td>1</td>
<td>0.07%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Large UID Mammal</td>
<td>47</td>
<td>3.50%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large-Medium UID Mammal</td>
<td>60</td>
<td>4.47%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium UID Mammal</td>
<td>3</td>
<td>0.22%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium-Small UID Mammal</td>
<td>36</td>
<td>2.68%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raccoon</td>
<td>1</td>
<td>0.07%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Small UID Mammal</td>
<td>12</td>
<td>0.89%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UID Mammal</td>
<td>402</td>
<td>29.96%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UID Rodent</td>
<td>1</td>
<td>0.07%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>White-tailed deer</td>
<td>33</td>
<td>2.46%</td>
<td>1</td>
</tr>
<tr>
<td>Reptiles</td>
<td>UID Softshell Turtle</td>
<td>1</td>
<td>0.07%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>UID Turtle</td>
<td>67</td>
<td>4.99%</td>
<td></td>
</tr>
<tr>
<td>Vertebrates</td>
<td>UID Vertebrate</td>
<td>428</td>
<td>31.89%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1342</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>
Table 14: Curry Site Taxonomic Class Representations

<table>
<thead>
<tr>
<th>Taxonomic Class</th>
<th>NISP</th>
<th>NISP %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibians</td>
<td>4</td>
<td>0.11</td>
</tr>
<tr>
<td>Birds</td>
<td>833</td>
<td>22.35</td>
</tr>
<tr>
<td>Fish</td>
<td>36</td>
<td>0.97</td>
</tr>
<tr>
<td>Mammals</td>
<td>1603</td>
<td>43.01</td>
</tr>
<tr>
<td>Reptiles</td>
<td>188</td>
<td>5.04</td>
</tr>
<tr>
<td>Vertebrates</td>
<td>1063</td>
<td>28.52</td>
</tr>
<tr>
<td>Total</td>
<td>3727</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6: Bone Awl
Deer Utility Index

The Deer Utility Index is used to help understand differential representations of deer elements in archaeological assemblages associated with provisioning. Using NISP percentages, each zone is compared to the standard deer. The comparative results for zones C through E are in Figure 8. The transitional period did not have enough deer for utility analysis. The only identifiable elements were a mandibular second premolar and a nearly complete shaft fragment the size of deer. Two UID Large mammals had elemental identifications of a rib and a cranial fragment, but there were not enough identifiers to confidently state these are deer.
Zone E also had a small sample size of only nine identified deer. Deer elements not included in the utility indices are antler, metapodial that could not be distinguished from hindfoot and forefoot, and unidentifiable shaft fragments. When compared to the standard deer, zone E has a higher representation of low utility elements and a low representation of mid utility elements. Zones D and C are more similar to the standard deer in NISP percentages than zone E. Zone D has 26 deer specimens and zone C has 33. Here, zones D and C have almost equal percentages of all utility types with zone D having a slightly higher representation of high utility elements. Both zone E and D have below average sample sizes, which is probably due to the high level of fragmentation throughout the assemblages.

Figure 8: Deer Utility Indices for the Curry Site
Log difference scales were also created to understand the comparability of zones with the standard deer. Log difference scales for zones E through C are illustrated in Figure 9. Zone E shows that, compared to the standard deer, the high and low utilities are similar with high utility being slightly overrepresented (0.605) than low (0.294). Not surprisingly, the mid utility elements are highly underrepresented with a value of -1.176. Zone D’s log difference scale is much different than E. The low utility elements are practically the same as a standard deer (-0.05). Mid utility elements are still indicating underrepresentation, but not as drastic as zone E (-0.156). Lastly, the high utility elements are overrepresented similarly to E, but slightly more so (0.644). The differences between zones E and D is most likely due to the differences in sample sizes between them. Lastly, zone C is the zone that is most similar to a standard deer. The representations of the low, mid, and high utility elements in the log differences show that zone C is extremely similar to a standard deer representation with a slight over representation of high utility elements.

In relation to the status and feasting scores, zone E scores a 1 with a moderate amount of high utility representations, but still consists of an overrepresentation of low utility elements. The feasting score for zone E is also a 1. Zone D represents a 3 on both the status and feasting dimensions due to the high representations of high utility elements compared to low utility elements being slightly underrepresented. Lastly, zone C scores a 1 on both status and feasting since it is overall low for all utilities, but still indicates a slightly higher representation of high utility elements. Additionally, with zone D/C having a sample size that is too small, the assemblage scores a 0 on both dimensions.
Butchering

Evidence of butchery is also evident in the utility indices but is separated here into log difference scales representative of smaller skeletal part distributions. Again, the sample of deer in the transitional zone is too small for proper analyses. In general, if the deer were butchered elsewhere, there would be little to no evidence of metapodial, feet, and cranial elements in the assemblage. Table 15 shows the NISP for each of the zones and Figure 10 shows the comparative butchery log difference scales. Zone E indicates overrepresentations in hindquarters, consistent with provisioning activities, but also an overrepresentation of cranial elements. Furthermore, there is evidence of
underrepresentations of the lower legs and feet that is consistent with butchery, even though there is a slightly higher representation of cranial elements. Based on the butchery evidence, zone E scores a -1 on the status dimension and a 1 on the feasting dimensions due to the differential representations of lower legs and feet and cranial skeletal parts. Zone D also shows underrepresentations of the lower legs and feet and overrepresentations of the skull and hindquarters. Different from zone E, zone D also has overrepresentations of forequarters. Based on these representations, zone D scores a -2 on the status dimension and feasting dimensions. Lastly, zone C has higher representations of hindquarters with slight overrepresentations forequarter and skull elements. Similar to the other zones, there are underrepresentations of axial and lower legs and feet. Based on the zone D scales the butchery measures score a -2 on both the status and feasting dimensions. Since zone D/C’s sample was too small, the zone scores a 0 on both dimensions.

<table>
<thead>
<tr>
<th>Skeletal Part</th>
<th>Zone E</th>
<th>Zone D</th>
<th>Zone C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skull</td>
<td>6</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Axial</td>
<td>0</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Forequarter</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Hindquarter</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Lower Legs and Feet</td>
<td>1</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>26</td>
<td>33</td>
</tr>
</tbody>
</table>
Figure 10: Curry Site Butchery Log Difference Scales

Fragmentation

Over all the zones, extreme amounts of bone fragmentation were visible across all specimens (Table 16). Each zone had over 90% of their assemblage consist of fragments less than 25% complete. Additionally, specimens that are >75% complete consists of less than 3% of each zone. When focusing on deer fragmentation, the assemblages are still dominated by specimens less than 25% complete, besides in the transitional zone (Figure 11). The deer remains were then separated into six categorical body portions to compare the amount of fragmentation between them by dividing weight by the total NISP of the category (Table 17). Unfortunately, only zone D and C are
comparable with similar sample sizes since zone E and C/D's low sample size distorts the data. In all but two incidences, zone C exhibits more fragmentation than zone D. Zone D is more fragmented than zone C is with the lower legs and feet and in the skull. Therefore, zones E through C show signs of intense fragmentation, but zone E’s evidence may be misleading by virtue of the small assemblage. In total, each zone exhibits high amount of fragmentation, which is signifying low status usage in each period of use as well as indicating an assemblage more consistent with domestic eating. Therefore, for all the periods exhibiting high amounts of fragmentation, zones E, D, D/C, and C all score a -3 on the status dimension and a 3 on the feasting dimension.

<table>
<thead>
<tr>
<th>Portion</th>
<th>Zone E</th>
<th>Zone D</th>
<th>Transitional Zone</th>
<th>Zone C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1>75%</td>
<td>1.51</td>
<td>2.26</td>
<td>1.85</td>
<td>1.78</td>
</tr>
<tr>
<td>50-75%</td>
<td>0.84</td>
<td>0.71</td>
<td>0.93</td>
<td>0.6</td>
</tr>
<tr>
<td>25-50%</td>
<td>2.18</td>
<td>2.2</td>
<td>1.85</td>
<td>1.19</td>
</tr>
<tr>
<td><25%</td>
<td>95.47</td>
<td>94.82</td>
<td>95.37</td>
<td>96.42</td>
</tr>
<tr>
<td>Total NISP</td>
<td>596</td>
<td>1681</td>
<td>108</td>
<td>1342</td>
</tr>
</tbody>
</table>
Rare/exotic species pertains to taxa that are not typical for everyday consumption. This may be because the taxa are difficult to hunt, come from far distances, or are inedible but used for other purposes. Beginning with zone E, there is little to no evidence for rare/exotic species. The only taxon that may hold symbolic

Table 17: Deer Skeletal Part Distribution

<table>
<thead>
<tr>
<th>Body Portion</th>
<th>NISP %</th>
<th>Weight/NISP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zone E</td>
<td>Zone D</td>
</tr>
<tr>
<td>Skull</td>
<td>66.67</td>
<td>46.15</td>
</tr>
<tr>
<td></td>
<td>4.59</td>
<td>8.97</td>
</tr>
<tr>
<td></td>
<td>6.76</td>
<td>2.33</td>
</tr>
<tr>
<td>Axial</td>
<td>7.69</td>
<td>3.13</td>
</tr>
<tr>
<td></td>
<td>4.55</td>
<td></td>
</tr>
<tr>
<td>Forequarter</td>
<td>22.22</td>
<td>11.54</td>
</tr>
<tr>
<td></td>
<td>28.65</td>
<td>41.08</td>
</tr>
<tr>
<td>Hindquarter</td>
<td>11.11</td>
<td>11.54</td>
</tr>
<tr>
<td></td>
<td>1.56</td>
<td>0.94</td>
</tr>
<tr>
<td>Lower Legs and Feet</td>
<td>9</td>
<td>26</td>
</tr>
</tbody>
</table>

Figure 11: Deer Fragmentation NISP %
information is the unidentified snake. Snakes were typically symbolic taxa of the Underworld depicted in Mississippian art. However, without an actual identification, it is unknown whether the snake was symbolic or not. Two of three snake vertebrae were calcined, indicating possible consumption. Therefore, Zone E scores a -2 on both the status and feasting dimensions.

Zone D also has unidentified snake, but both vertebrae were unburned. More interestingly, zone D had evidence of a swan ulna and pelvis that is most consistent with the identification of a trumpeter or tundra swan. Both elements were not thermally altered. Swans are typically depicted as symbolic taxa (Jackson and Scott 1995) and provide a large amount of meat. The presence of only the ulna and pelvis indicates a possible nonfood based purpose for the swan (Figure 12). For instance, the swan wing feathers could serve to adorn clothing, jewelry, and more specifically, headdresses due to the size of the wing feathers. It is also possible that the swan was consumed since the assemblages were highly fragmented, the bones could have been fragmented to extract marrow and grease. Thus, zone D scores a -2 on both the status and feasting dimensions because of the presence of the snake and the swan ulna that may represent ritualistic use of the feathers, but the amount of exotic/rare species is still low.
The transitional zone may have had the smallest assemblage, but it does have the most interesting specimen identification: a peregrine falcon. The only identifiable element was an unburned phalanx (Figure 13). Falcons are well known to be rare in faunal assemblages and strongly associated to southeastern Mississippian cosmology (Jackson and Scott 2003:554). Peregrine falcons specifically are more typically found at mound centers (Jackson and Scott 2003; Kelly 2001). Though the falcon phalanx is considered extremely rare, the transitional zone still scores a -2 on the status and feasting dimensions since it is the only exotic/rare species present.

Lastly, zone C had no identified species that are considered symbolic, dangerous, or rare/exotic in zone C. Overall, evidence of swan a in zone D and falcon between zones D and C suggest that their presence was for feasting, ceremonial, or
high status intent. This means that zone C scores a -3 on both the status and feasting dimensions.

Figure 13: Peregrine Falcon Phalanx

Seasonality

Finally, seasonality measures were applicable to zones E and C for mandibles (Table 18). There were no indications of skulls with attached antlers. The only antlers found were tines (n=4) with two of them being used as tools. The mandible found in zone E consisted of only the left side and was missing all dentition postmortem except for three teeth. Based on the amount of wear exhibited on the teeth, this mandible was aged to 10 and a half years, which indicates exploitation during the summer or fall. Zone C had a right and a left mandible that only contained molars. The mandibles were too fragmented to determine if they are from the same individual, but they are both aged to
2.5 years using tooth wear analysis. Therefore, zones E and C both show evidence of a summer/fall hunts and do not support a year-round occupation of the Curry Site. This means that Zone E and C score a 0 on the status dimension and a 1 on the feasting dimension since I could not confirm nor deny the presence of other seasons. Zones D and D/C score a 0 on both dimensions since there is no seasonality associations.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Mandible NISP</th>
<th>Sides</th>
<th>Season</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>1</td>
<td>Left</td>
<td>Summer/Fall</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>Left and Right</td>
<td>Summer/Fall</td>
</tr>
</tbody>
</table>
DISCUSSION

The Curry Site is a Middle Mississippian site occupied from approximately A.D. 1280–1440. Previously, an investigation into the function of the Curry site mound indicated three periods of use as well as a possible functional change between the second and third period of use. The first investigation of the faunal remains calculated the amount of deer present in the assemblage. This study performed an in-depth analysis of the faunal assemblages in accordance to each period of use. Using measures of deer utility, butchering, fragmentation, exotic/species, and seasonality, a score was created to determine where each assemblage lies on the status and feasting dimensions. All MNI results were calculated based on less than 40 specimens, with the most being Zone C white-tail deer \((n=33)\). With the low specimen sample sizes for the Curry Site, these MNI results are highly exaggerated (Grayson 1978).

The Deer Utility Index dimension showed that, compared to a standard deer, there were differences in each period of use. Zone E’s log difference scale is more similar to an assemblage associated with high status because of the overrepresentation of high utility elements and the underrepresentation of mid utility elements. However, with the overrepresentation of low utility elements, though slight, is more typical of low status domestic eating. Zone D shows an interesting change with a high representation of high utility elements and almost no representations of mid and low utility being very similar to a standard deer. Zone D still suggests deer utility more typical of a high-status domestic eating, but it could also be a feasting event. The transitional zone only consisting of two elements, and one being a shaft fragment, was not concluded in this analysis. Zone C is much different than the other zones because it shows little
representations above or beneath the standard deer. However, there is a slight favor for a higher representation of high utility elements.

Butchering measures were also analyzed through log difference scales to show how each body portion faired compared to a standard deer. All three zones showed higher representations of hindquarter and skull elements along with underrepresentations of axial and the lower legs and feet. The only skeletal portion that were not similar across the assemblages was the forequarter, which was overrepresented in in zones D and C, but underrepresented in zone E. The overrepresentations of the lower legs and feet may be due to the metapodial being used for bone tool production (Kidder and Barondess 1981).

High fragmentation such as that consistent with all Curry Site zones, is typically associated with feasting and in low status subsistence. Each period of use demonstrated high quantities of fragmented elements comprising over 95% of each assemblage. However, looking at average weight for each deer body portion, zone C showed more fragmentation than D and D more so than E. The transitional zone may have a sample of two, but both were not below 25% completion. Accordingly, Zone C is more likely of feasting or low status followed by D, C and the C/D.

The sample size of deer for the Curry Site affected the representations and fragmentation of deer. To recap, each zone had an MNI of one with a total of 70 specimens with high amounts of burning and fragmentation. Over 50% of the remains indicated some sort of burning from partially burned to totally calcined. Furthermore, the assemblages consisted of extreme amounts of fragmentation. The fragmentation may be due to the remains being boiled to extract grease or broken to extract marrow, which
results in small bone fragments (Lyman 1994). Both the amount of burning, and the production of grease may be what caused the high fragmentation of the Curry Site.

Rare/exotic species, to reiterate, are species that are not typically in the diet due to being difficult to hunt, not being native to the area, are dangerous to hunt, or are integral in the three worlds of Mississippian cosmology. At the Curry site, there were only a few instances of rare/exotic animals, which leaves interesting results in this dimension. Zone E and zone C had no indications of rare/exotic animals, except for the burned snake in zone E. Zone D contains evidence of a swan pelvis and ulna that were unburned, which may suggest the wing being used for collecting feathers to adorn to jewelry or clothing. Lastly, zone C/D has evidence of a peregrine falcon phalanx which is exceedingly rare in Mississippian assemblages and usually only associated with mound centers or ritualistic feasting. Therefore, zone C/D is more closely associated with high status and feasting, but still may of low status since it was the only rare/exotic species found in the zone.

Lastly, seasonality was a difficult measure to use for this assemblage as a result of the small sample sizes. Zone E, with only one half of a mandible to use of deer aging, indicates a late summer/fall hunt. Zone C is the only other zone with seasonality information with two mandible halves also showing a late summer/fall hunt.

Table 19 provides a summary of the scores for each zone and Figure 14 shows how the composite scores place along the continuums. The composite scores present interesting results for the Curry Site assemblages. According to Palmer (2007) the Curry Site was expected to show a change in function on the mound between zones D and C due to a lack of features in zone C compared to the apparent structure present and
maintained through zones D and E. The change was expected to be from a household
domestic eating place to a possible social gathering location. However, the composite
scores yielded different, more interesting information. From the first period of use to the
last period of use, there is a decrease through time of possible feasting activity. This is
indicated by the first period of use being higher than the others in possible feasting
aspects. On the other hand, zone C rides the line between possible feasting and
domestic eating activity. Additionally, zone C has a higher indication of low status eating
compared to the other three zones that show do show low status eating, but more so
than the other three zones. For this reason, analyses of the faunal assemblages are
found to not support Palmer’s hypothesis that the mound function changed from a
domestic eating location to a feasting location. Instead, the results indicate the opposite.

<table>
<thead>
<tr>
<th>Measure</th>
<th>E</th>
<th>D</th>
<th>D/C</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Utility</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Butchering</td>
<td>-1</td>
<td>1</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>Fragmentation</td>
<td>-3</td>
<td>3</td>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td>Exotic/Rare</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>Seasonality</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Composite Score</td>
<td>-5</td>
<td>4</td>
<td>-4</td>
<td>2</td>
</tr>
</tbody>
</table>
Though the literature of small single mound sites is lacking, research from the Curry Site supplemented this topic by presenting a unique example of how archaeology can benefit from analyzing data on a finer scale. By representing the zooarchaeological assemblage on continua of feasting and status, I found that there is variation between each zone. Even more so, I found that the faunal assemblages do not support the hypothesis that zones E and D represent domestic eating and that zone C represents feasting. On the contrary, the assemblages signal a change from likely feasting activity to more domestic activities all the while staying on the low status portion of the status continuum. Though the faunal assemblages did not support what Palmer hypothesized, the assemblages did have something interesting to say about the mound function and use. In accordance to the faunal materials, the assemblages were more likely created
by those of lower status, which signifies that it is not always high-status individuals that live on and/or use mounds. In other words, the analyses of the Curry Site fauna show that the Mississippian Period is more than just high-status control, but also indicative of lower status variability beyond farmstead food production. The variability presented here may show that the structure was primarily used for communal eating, but then transitioned into something else that resembled remains between domestic and feasting refuse. Without the dimensions being continuous, this variability would have never presented itself.

In conclusion, the Curry Site presented interesting information regarding the use of single mound sites in the Southeast during the Mississippian Period. Overall, the assemblages contributed to the knowledge of low status societies. Furthermore, the fact that the mound function does show a change in use indicates that low status sites have more to add to the archaeological literature than just their functions that contribute to larger polities. These low status individuals show that they do have higher representations of high utility elements, can access exotic/rare animals, but still fragment their specimens to extract all the nutritional marrow within the bones. As far as I can tell, the use of the Curry Sites mound presents a unique case to learn about all aspects of Mississippian life, and not just that of the high-status individuals who had it all.

The research presented here would benefit from additional work at the Curry Site. Since the mound was only partially excavated, a full excavation and analysis of the faunal remains may help support the analyses presented here. Additionally, with a possible village site near the mound, excavations in that area may also bring new
information and remains to light. For instance, if there is a village nearby, it is possible that the mound was repurposed by low status individuals as a refuse location.

Palmer’s initial analysis of the function of the Curry Site was based on a mixture of present features, types of pottery, and the structure visible in the geophysical results. She concluded that the site settlement best represented a single family/domestic home that changed function into a communal eating area for a hamlet sized community. Though Palmer and I agree that there is a possible period of use that changes function, we measured that change differently. For this reason, analysis of the faunal remains in conjunction with the other material culture will aid in the site analysis. This may occur through the application of various other classification schemes based on pottery, site size, fauna, or other material artifacts. In other words, a full contextual analysis of the Curry Site will yield more information. Furthermore, using other zooarchaeological measures and comparing the Curry site to other assemblages will be advantageous. Lastly, more research in the Black Prairie is warranted to learn more about possible regional patterns. Additional research in these areas may enhance the data and analyses presented here.

The implementation of the paradigmatic classification system of the two feasting and social status dimensions was useful, but still needs a lot of work. With larger and more various assemblages following this example, measures for all faunal assemblages will be more comparable and placed on the same measurable scale. The current issue with status and feasting based research in Mississippian Period societies is that the boundaries for the dimensions are determined before the analyses begin, which causes no one to actually learn anything and leaves the analysis objectiveless, un-measurable,
and overall not comparable between researchers and other assemblages. The utilization of this classification system will yield interesting and variable results that are also comparable on a common scale.
WORKS CITED

Bense, Judith A.
1994 *Archaeology of the Southeastern United States: Paleoindian to World War I.*
Academic Press: San Diego, California.

Benson, Larry V., Timothy R. Pauketat, and Edward R. Cook
2009 *Cahokia’s Boom and Bust in the Context of Climate Change.* *American Antiquity*
74(3):467-483.

Bird, Rebecca B. and Eric A. Smith
2005 *Signaling Theory, Strategic Interaction, and Symbolic Capital.* *Current Anthropology* 46(2):221-248

Blakeman, Crawford H. Jr.
1975 An Archaeological Site Survey in Central Oktibbeha County, Mississippi June-July. Department of Anthropology, Mississippi State University.

Blakeman, Crawford H., James R. Atkinson, and G. Gerald Berry
1976 *Archaeological Excavations at the Cofferdam Site, 22Lo599, Lowndes County, Mississippi.* Submitted to the U.S. Army Corps of Engineers, Mobile District, by the Department of Anthropology, Mississippi State University.

Blitz, John

Bourdieu, P.

Brent, Floyd V.
1973 *Soil Survey of Oktibbeha County, Mississippi.* United States Department of Agriculture Soil Conversation Service.

Caddell, Gloria M.
1983 Floral Remains from the Lubbub Creek Archaeological Locality. In *Excavation in the Lubbub Archaeological Locality: Prehistoric Agricultural Communities in West*

deFrance, Susan
2009 Zooarchaeology in Complex Societies: Political Economy, Status, and Ideology.
Journal of Archaeological Research 17:105-168.

Dietler, Michael

Dietler, Michael, and Brian Hayden

Dunnell, Robert C.

Du Pratz, Le Page

Earle, Timothy

Fried, Morton H.

Gilbert, B. M.

Grayson, D. K
Hart, John P., and Hetty Jo Brumbach

Hastorf, Christine Ann

Hayden, Brian

Hayden, Brian, and Suzanna Villeneuve

Hogue, S. Homes

Hogue, S. Homes and Janet Rafferty

Hogue, S. Homes and Robert McCain

Jackson, Edwin H., and Susan L. Scott

Kassabaum, Megan C.

Kidder, Tristram R. and David A. Barondess

Kelly, Lucretia S.

Knight, Vernon James

Knight, Vernon James and Vincas P. Steponaitis

Lyman, Lee R.

Michals, Lauren M.
1980 The Exploitation of Fauna During Moundville I Phase at Moundville.

Muller, Jon

Nassaney, Michael S. and Charles R. Cobb

Nolan, Kevin C., and Robert A. Cook

O’Hear, John W.
1990 Archaeological Investigations at the Sander’s Site (22Cl917). Report of Investigation 6, Cobb Institute of Archaeology, Mississippi State University.

O’Hear, John W., Clark Larsen, Margaret M. Scarry, John Phillips, and Erica Simons
1981 Archaeological Salvage Excavations at the Tibbee Creek Site (22Lo600), Lowndes County, Mississippi. Submitted to the U.S. Army Corps of Engineers, Mobile District, by the Department of Anthropology, Mississippi State University.

Olsen, Stanley J.
1968 *Fish, Amphibian, and Reptile Remains from Archaeological Sites. Part 1: Southeastern and Southwestern United States*

Palmer, Nicole

Pauketat, Timothy R.

Pauketat, Timothy R. and Thomas E. Emerson

Peacock, Evan and S. Homes Hogue

Peres, Tanya M.

Rafferty, Janet

Ramenofsky, A.F., and A. Steffen

Reitz, Elizabeth J. and Elizabeth S. Wing

Reitz, Elizabeth J., Mark Williams, and Katie B. Dalton
2020 Rare Animals at a Mississippian Chiefly Compound: The Irene Mound Site (9CH1), Georgia, USA. Southeastern Archaeology 39:1-20.

Rice, Prudence M.

Rogers, J. Daniel and Bruce D. Smith
1995 Mississippian Communities and Households. The University of Alabama Press, Tuscaloosa.

Russell, Nerissa

Scarry, John F., H. Edwin Jackson, and Mintcy D. Maxham

Scarry, Margaret C. and John F. Scarry

Scott, Susan

1983 Analysis, Synthesis, and Interpretation of Faunal Remains from the Lubbub Creek Archaeological Locality. In Excavation in the Lubbub Archaeological Locality:

Seeman, Mark F.

Service, Elman R.

Severinghaus, C. W.

Shryock, Andrew J.

Swanton, John

Twiss, Katheryn

Welch, Paul

Welch, Paul and Margaret Scarry

Wesson, Cameron

Wiessner, Polly

Zeder, Melinda and Susan Arter