












due to Hamil Lon, reli es on the conservation of energy as its starting poinL: another, due to 
Lagrange, begins with the principle of least action. 

Given a fi eld ,48 its state can be specifi ed as a function of fi elds and their time derivati ves 
namely, the state L( (Pi, 0J.L ¢i ). This state can be interpreted as a function which varies 

pointwise, taking as inputs ¢i (P) and the partial deri vati ves of ¢ at p; i t can thus be inter­
preted as a coll ection of 4-forms49 L i . The functi onal, or group of 4-forms, is known as the 
Lagrangian density. The principle of least action dictates that , for each i , the system will 
evolve in such a manner as to minimize the action J L . 

Through variational calculus techniques, i t can be shown that a solution minimizing the 
action must sati sfy the Euler-Lagrange equations 50 

o ( oL ) = oL 
J.L O(O/l ¢i ) O¢i · 

Let 's look at three examples. First, consider the Kl ein-Gordon Lagrangian for a spin 0 
fi eld of mass m: 

L = �~�( �0 �/�l �¢ �)�(�0 �J�.�L�¢ �)� _ �~� �(�~ �c �)� 2 ¢2. 

There is only one fi eld here, so it is not terribl y tedious to use the Euler-Lagrange equations: 

oL _ o/t oL _ (mC)2 
O(OJ.L ¢) - ¢, o¢ - - r;: ¢, 

so 

O/lOJ.L¢ + �(�~ �c �)� 2 ¢ = O. 

This is the controlling equation for the wavefunction of a single fr ee particle of zero spin and 
mass m. Actual wavefunctions are solutions to this equation. 

Second, consider the Dirac Lagrangian for the wavefunction of a part icle of spin �~�.� 

L = i (nc)-:tiry J.L oJ.L 7/J - (mc2)7j;1jJ . 

We take two fi eld , 1jJ and 7j;, so aft er cranking through the Euler-Lagrange equations we have 
two sets of equations: 

(mc) i'y /l 0J.L 7/J - r;: 1jJ = 0 

iO'L7j;,,( /l + �c�r�~ �c �)� 7j; = O. 

These are the Dirac equation and i ts adjoint , respectively, for a particle of spin �~� and mass 
m. They model relativisti c electrons and posi trons. 

48The classical version actuall y starts wit h a single particle a(t) and defin es, for kinet ic energy T = 

�~ �m�[�a�' �(�t�)�j�2� and potent ial energy U(p) , L = T - U = �~�m �[�a�' �(�t�)�f� - U(p). The same minimizat ion procedure 
as above is fo ll owed, and the a which solves the different ial equations is the fu ture evolut ion of the system. 
Of course, if F is a conservative force on the parti cle, it can be shown that , if F = - \lU, the solution of 
Newton's second law minimizes L . 

49 Actuall y, more generall y, highest-dimensional forms. 
501n this section, and this secti on alone, we use Einstein 's summation notation: 

AI-LE'L = LAJ.lE'L. 
1-' 
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T hird. con!::i ider the Proca Lagrangian for a spin-1 (vector) fie ld. 

After applying the minimization condition, we are left with the model 

This describes a par ticle of spin 0 and mass Tn . If Tn = 0, then, substituting F'lV = ai' AV -
aV AI', we have al'Fl'v = 0, Maxwell's equations in the vacuum. The vector potent ial AI' is 
the wavefunction of a photon. 

12.2. Gauge invariance. Let us examine again the Dirac Lagrangian , in a manner very 
similar to Section 9.2 : 

As in the example above where the classical electromagnetic potent ial was derived from the 
Schrodinger equation, we insist on local phase invariance on the action. That is, observations 
should not depend on the phase of the spinor's wavefunction. We therefore examine t he effect 
of a local phase change '1/) -+ ei fJ (p)7jJ on the Lagrangian: L -+ L - lic( aI'B)7jJ11''I/). Sett ing 
A = -f2£.B, where q now represents the charge, we have that 

q 

and, correspondingly, 

We wish to make the Lagrangian invariant , so to get rid of the extra term we subtract a 
term which vanishes upon rotation by A and cancels out the extra term: 

where AI' is a vector function, the gauge field, which obeys A I' -+ AI' + °1,>' . 
Now L is invariant under the local phase rotation , but we have introduced a new term 

into the equation , and we need a free term for it . It is a vector , so we look to the Proca 
Lagrangian , setting the mass to zero so that the free term transforms correctly: 

(F I'V is as above.) 
We have produced a Lagrangian , invariant under phase change (i.e., under act ion by U(l )) 

which has not one but three terms: the original electron/ positron term, the coupling term 
where the wavefunction of the spinor interacts wi th the vector gauge field, and t he free 
term of a massless particle of spin O. We, merely by insisting t hat the Dirac Lagrangian be 
invariant under action of U( l) , have created electrodynamics. 
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12.3. Fiber bundles . The equations describing the transformation of the gauge field un­
der gauge transform ations and the requirement that ordinary differentiat ion be repl aced by 
gauge-covari ant differentiation implies that gauge theories could be more precisely modeled 
as theories of connections on vector bundles, or, more generally, on fiber bundles. 51 A fib er 
bundle is a generalization of a vector bundle that permits the expression of the action of a 
particular Lie group to influence the connection. The derivative constructed from a connec­
tion is called a covariant derivative; expressing the gauge invariance of a wavefunction under 
a symmetry group requires the use of the covari ant derivative in the Lagrangian, which in 
turn implies the existence of a gauge field, a mapping from a manifold into the symmetry 
group 's Lie algebra. 

CON CLUSION 

I hope this thesis has served well. It certainly has helped me fit together and better 
understand the mathematics of differentiable manifolds and how they relate to physics. This 
project is hardly complete, however: the interested reader52 will certainly need to pursue these 
ideas in other sources to see, for example, gauge theories take more precise mathematical 
shape when expressed in the much richer and more general language of fiber bundles. 
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51 tIl develops fiber bundles precisely for such applicat iolls. 
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