




















Third. consider the Proca Lagrangian for a spin-1 (vector) field.
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After applying the minimization condition, we are left with the model

mc

B,(8"AY — 8" AF) + (—h—)2 A” =0,

This describes a particle of spin 0 and mass m. If m = 0, then, substituting F** = 0" A" —
0" A, we have 0,F*" = 0, Maxwell’s equations in the vacuum. The vector potential A* is
the wavefunction of a photon.

12.2. Gauge invariance. Let us examine again the Dirac Lagrangian, in a manner very
similar to Section 9.2:

L = i(h)yy 0 — (mc?)d.
As in the example above where the classical electromagnetic potential was derived from the
Schrodinger equation, we insist on local phase invariance on the action. That is, observations
should not depend on the phase of the spinor’s wavefunction. We therefore examine the effect
of a local phase change ¢ — ¢ on the Lagrangian: L — L — he(3,0))y"y). Setting
A= —ﬁ—;H, where ¢ now represents the charge, we have that
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and, correspondingly,
L — L — (qv"4)0.

We wish to make the Lagrangian invariant, so to get rid of the extra term we subtract a
term which vanishes upon rotation by A and cancels out the extra term:

L = [i(R)y" 9, — (me® )] — (qv"9) A,

where A, is a vector function, the gauge field, which obeys A, — A, + 9, \.

Now L is invariant under the local phase rotation, but we have introduced a new term
into the equation, and we need a free term for it. It is a vector, so we look to the Proca
Lagrangian, setting the mass to zero so that the free term transforms correctly:

= [i(h)m/"aﬁw — (mcﬂ@@b] — (qYy")A, + [—E%F’“’Fw,:l .
(F" is as above.)

We have produced a Lagrangian, invariant under phase change (i.e., under action by U(1))
which has not one but three terms: the original electron/positron term, the coupling term
where the wavefunction of the spinor interacts with the vector gauge field, and the free
term of a massless particle of spin 0. We, merely by insisting that the Dirac Lagrangian be

invariant under action of U(1), have created electrodynamics.
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12.3. Fiber bundles. The equations describing the transformation of the gauge field un-
der gauge transformations and the requirement that ordinary differentiation be replaced by
gauge-covariant differentiation implies that gauge theories could be more precisely modeled
as theories of connections on vector bundles, or, more generally, on fiber bundles.>' A fiber
bundle is a generalization of a vector bundle that permits the expression of the action of a
particular Lie group to influence the connection. The derivative constructed from a connec-
tion is called a covariant deriwative; expressing the gauge invariance of a wavefunction under
a symmetry group requires the use of the covariant derivative in the Lagrangian, which in
turn implies the existence of a gauge field, a mapping from a manifold into the symmetry
group’s Lie algebra.

CONCLUSION

I hope this thesis has served well. It certainly has helped me fit together and better
understand the mathematics of differentiable manifolds and how they relate to physics. This
project is hardly complete, however: the interested reader®® will certainly need to pursue these
ideas in other sources to see, for example, gauge theories take more precise mathematical
shape when expressed in the much richer and more general language of fiber bundles.
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51[1] develops fiber bundles precisely for such applications.
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