The solution of certain parabolic partial differential equations through Gaussian-Markov stochastic processes
Authors
Advisor
Issue Date
Keyword
Degree
Department
Other Identifiers
CardCat URL
Abstract
This thesis considered the connections between parabolic partial differential equations of the diffusion type and Gaussian-Markov stochastic processes, in particular the Wiener process. A method has been developed by which certain Wiener integrals of the type∫C0[0,1] exp{t/a ∫1/0 e[t(1-s), 2 √(t/a) x(s) =ξ] ds} o [2√(t/a) x(1) – ξ] dwxHave been obtained as solutions of non-homogeneous heat equations. In the appendix the method has been extended to the evaluation of Wiener integrals of the type,∫C0 [0,t] exp {∫t/0 e [t-s, x(s) + ξ] ds} o [x(s) + ξ] dwx.In addition an inequality which gives bounds for Wiener integrals of the type∫C0 [s,t] exp {-∫t/s F[x( r )] dr} dwx has been deduced.Further, certain parabolic partial differential equations have been solved by building suitable Green’s functions through Gaussian-Markov stochastic processes. Two stochastic processes which exhibit certain interesting features have been obtained and briefly discussed.Ball State UniversityMuncie, IN 47306