The development of an optical position sensor

No Thumbnail Available
Kinney, Stuart
Ober, David R.
Issue Date
Thesis (M.S.)
Department of Physics and Astronomy
Other Identifiers

A theoretical study of an electrically passive, loss-compensated, optical position sensor is the goal of this project. Optical fiber sensors exploit light as the information carrier. Fiber-optic sensors consist of a constant light source launched into an optical fiber and transmitted to another point at which a measurement is made.In the proposed optical position sensor, a Light Emitting Diode (LED) produces a constant beam of light, which is channeled through an optical fiber to a Graded Index (GRIN) lens. This lens makes all the light rays parallel to one another, a process called collimation. The light then enters a polarizer which is a lens that further orders the light rays in a process called polarization.Then the light enters a chamber in which a doubly refracting (birefringent) crystal is situated. The crystal is a wedge, and thus has a varying thickness throughout its length. The light beam strikes the crystal, sending a spectrum, or spectral signature, that is distinct to the particular thickness of the crystal. That signature goes directly from the chamber housing the crystal into a lens called an analyzer which orders the light again through polarization. Then the light goes into another GRIN lens, and this GRIN lens focuses the light onto an optical fiber, which transmits the particular spectral signature of this light to an optical spectrum analyzer (OSA). The OSA uses a Photodiode Array to accept the incoming light, a device that takes in light and redistributes it to a monitor for display by the user. Such a device is called a detector. The thickness of the crystal that the light travels through is determined by the crystal's position.If the crystal rests on a platform which is connected to an object whose position must always be monitored, then the crystal will move as the object moves. The different spectral signatures shown on a monitor reveal different thicknesses of the crystal, which reveal different positions of the monitored object. The object whose position is measured is the measurand.The selected crystal is quartz. It has a 12.5-mm length, a width of 10.8-mm at its thinnest end, and a taper angle to the thickest end of only 0.008 degrees, which corresponds to a 0.17-micron difference between the two. This angle is called the polishing angle of the quartz. The quartz itself is called the active cell. The Photodiode Array Detector receives the spectral signature from the optical fiber, and that signature is projected on an OSA, which is software built-in to the computer. A mathematical program is used to evaluate the signature, and the position of the measurand is thereby revealed. How accurate the measurement is can be revealed by use of a control device. If the quartz crystal is moved by a measuring device, such as a micrometer, the distance that the crystal moved may be measured by the micrometer, as well as by the OSA. By comparing the two, the accuracy of the spectrograph, and the position it reveals, can be known.