General families of skew-symmetric distributions
Authors
Advisor
Issue Date
Keyword
Degree
Department
Other Identifiers
CardCat URL
Abstract
The family of univariate skew-normal probability distributions, an extension of symmetric normal distribution to a general case of asymmetry, was originally proposed by Azzalani [1]. Since its introduction, very limited research has been conducted in this area. An extension of the univariate skew-normal distribution to the multivariate case was considered by Azzalani and Dalla Valle [4]. Its application in statistics was recently considered by Azzalani and Capitanio [3]. As a general result, Azzalani (1985) [See [1]] showed that, any symmetric distribution can be viewed as a member of a more general class of skewed distributions.In this study we establish some properties of general family of skewed distributions. Examples of general family of asymmetric distributions is presented in a way to show their differences from the corresponding symmetric distributions. The skew-logistic distribution and its properties are considered in great details.